
PRACTICAL ANALYSIS OF EMBEDDED

MICROCONTROLLERS AGAINST CLOCK

GLITCHING ATTACKS

Ricardo Gomes da Silva

me [at] rgsilva [dot] com

@debugweshell

H2HC, Hackers to Hackers Conference , 11ª edição, 2014

WHO AM I?

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Agenda

ÅIntroduction

ÅGlitcher design

ÅThe setup

ÅAttacking the target

ÅConclusion

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 2 of 35

INTRODUCTION

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Introduction

ÅMicrocontrollers

ÅExtremely popular, present nearly everywhere

ÅEmbedded devices

ÅDriven by a clock signal

ÅClock signals

ÅDigital circuits

ÅSynchronization

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 4 of 35

Clock glitching

ÅNon -invasive attack

ÅNo need for big tools

ÅNo need for opening the chip

ÅIt usually does not destroy the chip

ÅUnexpected behavior in the clock signal

ÅChanges in the frequency

ÅGoal ð exceed maximum frequency of the chip (by far)

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 5 of 35

Clock glitching

ÅClock is faster than data propagation

ÅInstruction or data is corrupted

ÅNew data does not arrive in time

ÅSecurity

ÅTarget one or multiple instructions ð timing -critical attack!

ÅCorrupted instructions (unknown/different opcodes)

ÅCPU halts or instruction is skipped

ÅAVR microcontrollers ð unknown opcode is replaced by NOP

ÅControl -flow can be altered

ÅBypass security measures

ÅExit or repeat loops

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 6 of 35

Clock glitching

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 7 of 35

GLITCHER DESIGN

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Glitcher design

ÅModular design

ÅFully configurable glitches

ÅDelay : when should we glitch ?

ÅWidth : for how long ?

ÅMode : how exactly is the output signal?

ÅSupport to multiple glitches within one execution

ÅFIFO to hold glitches in sequence

ÅSolution for synchronization issue

ÅExternal reset and boot trigger

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 9 of 35

Glitcher design

ÅDevelopment platform: Die Datenkrake

ÅOpen -source hardware and software toolchain

ÅFocus in reverse -engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

Glitcher design

ÅDevelopment platform: Die Datenkrake

ÅOpen -source hardware and software toolchain

ÅFocus in reverse -engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

ÅTiming-critical stuff

ÅPLL is available

ÅFIFO generation tools

ÅWishbone bus

Glitcher design

ÅDevelopment platform: Die Datenkrake

ÅOpen -source hardware and software toolchain

ÅFocus in reverse -engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

ÅTiming-critical stuff

ÅPLL is available

ÅFIFO generation tools

ÅWishbone bus

ÅReal-time OS

ÅUART for CLI

ÅControl and monitor

Glitcher design

ÅCore module

ÅGenerates the clock signal and the glitches

ÅMultiplexer to switch through sources

ÅHard to interface and/or configure

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 11 of 35

Glitcher design

ÅMain module

ÅConcept of delay , width and mode as glitch configuration

ÅFIFO for multiple glitches

ÅExternal target reset and trigger signals

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 12 of 35

Glitcher design

ÅWishbone Wrapper

ÅInterface for the DDK

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 13 of 35

THE SETUP

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

The setup ð target

ÅAtmel XMEGA -A1 Xplained

ÅATxmega128A1 microcontroller evaluation kit

ÅRuns the code to be attacked

ÅPreviously known (although not really necessary)

ÅNo protections (real -time platform)

ÅUses the glitcher as clock source

Å33 MHz for normal execution, 99 MHz for glitching

ÅCan be externally reset

ÅCan be externally monitored

ÅBoot trigger

ÅGPIO or UART for glitch detection

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 15 of 35

The setup ð host

ÅExact glitch position is unknown

ÅMultiple scenarios are valid

ÅPipeline ð fetch, decode, execute

ÅThousands of combinations must be tested

ÅBrute-force attacks within a range

ÅA script is necessary

ÅGenerate all the combinations within a range

ÅTry each one of them with N repetitions

ÅLog the result from the target (GPIO or Serial)

ÅPeriodically executes a self -test

ÅProtection against instabilities

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 16 of 35

The setup

DDK Target

Boot trigger

Reset

Clock

Host
UART CLI UART

The glitcher
Runs the

code being
attacked

Monitors the
DDK and the

target

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 17 of 35

The setup

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 18 of 35

ATTACKING THE TARGET

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Attacking the target

ÅI ð Baby steps (handmade AVR assembly)

ÅII ð Proof of concept (handmade C code)

ÅIII ð Real world (3rd -party C code)

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 20 of 35

Baby steps ð JMP (1)

Infinite loop

Should never be executed!

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 21 of 35

Baby steps ð JMP (1)

ÅMultiple combinations are possible

ÅA pattern is visible

ÅInfinite loop makes it easy to hit the instruction

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 22 of 35

Baby steps ð JMP (2)

Infinite loop

Second infinite loop

(with LEDs)

Should never be executed!

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 23 of 35

Baby steps ð JMP (2)

ÅTwo patterns visible

ÅGaps represent the current iteration

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 24 of 35

Proof of concept ð strcpy

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 25 of 35

Proof of concept ð strcpy

1. Load the next byte and increase the source pointer

2. Store the byte and increase the destination pointer

3. Check if itõs zero ð if not, continue the loop

ÅWhat happens if we glitch the LD or the AND instructions?

ÅPipeline vs. NOP padding

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 26 of 35

Proof of concept ð strcpy

ÅNot so many combinations to glitch it

ÅOne specific instruction is being glitched

ÅEither LD or AND

ÅWe must wait until he hit the null -byte

ÅThe bigger the string, the more time we need to wait

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 27 of 35

Proof of concept ð strcpy

ÅSuccess on extracting a òsecretó string: 222222

ÅThe null-byte is now 0x10

ÅStrong indicator for a LD glitch and not an AND instruction

ÅCan we repeat it? If yes, how far can we go?

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 28 of 35

Proof of concept ð strcpy

ñfoobar ò ñ222222ò

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 29 of 35

Proof of concept ð strcpy

ñfoobar ò ñ222222ò ñ111111ò

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Proof of concept ð strcpy

ñfoobar ò ñ222222ò ñ111111ò

Byte 0x50 instead

of 0x10 as

separator

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Proof of concept ð strcpy

ñfoobar ò ñ222222ò ñ111111ò

Byte 0x50 instead

of 0x10 as

separator

Different results

with different

lengths

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Real world ð crypto libraries

ÅPractical Second -Order Fault Attack against a Real -

World Pairing Implementation (FDTC 2014)
Johannes Blömer , Ricardo Gomes da Silva, Peter Günther, Juliane Krämer, Jean -Pierre Seifert

ÅòFirst practical fault attack against a complete

pairing computationó

ÅPairing -based crypto attacked through hardware

ÅSame setup

ÅExtra features on the DDK for profiling

ÅExtra size for delay: 32 instead of 8 bits

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 31 of 35

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world ð crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

. loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

. loc 1 486 0

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29, - 2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

CONCLUSION

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Conclusion

ÅA clock glitching platform was fully developed

ÅBoth hardware and software are open -source

ÅSupport to multiple glitches within the same execution

ÅAutomatic attacking and monitoring

ÅLog of attacks and basic analysis of success/failure

ÅAutomatic self -testing

ÅWe successfully attacked an AVR microcontroller

ÅAttacks are repeatable and stable

ÅReal world targets can also be attacked in this setup

ÅExiting loops and dumping memory are just examples

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 34 of 35

Conclusion

ÅWhy is this a good solution?

ÅCheap solution

ÅNo need for big tools

ÅNon -destructive attack

ÅNo need to open or probe inside the chip

ÅDid I say itõs open-source? : -)

Glitcher ARM: https ://github.com/rgsilva/ddk - arm/

Glitcher FPGA: https ://github.com/rgsilva/ddk - fpga/

DDK source : http ://datenkrake.org /

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 35 of 35

PRACTICAL ANALYSIS OF EMBEDDED

MICROCONTROLLERS AGAINST CLOCK

GLITCHING ATTACKS

Ricardo Gomes da Silva

me [at] rgsilva [dot] com

@debugweshell

H2HC, Hackers to Hackers Conference , 11ª edição, 2014

Extra ð state machine

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

