
PRACTICAL ANALYSIS OF EMBEDDED

MICROCONTROLLERS AGAINST CLOCK

GLITCHING ATTACKS

Ricardo Gomes da Silva

me [at] rgsilva [dot] com

@debugweshell

H2HC, Hackers to Hackers Conference, 11ª edição, 2014

WHO AM I?

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Agenda

• Introduction

• Glitcher design

• The setup

• Attacking the target

• Conclusion

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 2 of 35

INTRODUCTION

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Introduction

• Microcontrollers

• Extremely popular, present nearly everywhere

• Embedded devices

• Driven by a clock signal

• Clock signals

• Digital circuits

• Synchronization

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 4 of 35

Clock glitching

• Non-invasive attack

• No need for big tools

• No need for opening the chip

• It usually does not destroy the chip

• Unexpected behavior in the clock signal

• Changes in the frequency

• Goal – exceed maximum frequency of the chip (by far)

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 5 of 35

Clock glitching

• Clock is faster than data propagation

• Instruction or data is corrupted

• New data does not arrive in time

• Security

• Target one or multiple instructions – timing-critical attack!

• Corrupted instructions (unknown/different opcodes)

• CPU halts or instruction is skipped

• AVR microcontrollers – unknown opcode is replaced by NOP

• Control-flow can be altered

• Bypass security measures

• Exit or repeat loops

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 6 of 35

Clock glitching

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 7 of 35

GLITCHER DESIGN

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Glitcher design

• Modular design

• Fully configurable glitches

• Delay: when should we glitch?

• Width: for how long?

• Mode: how exactly is the output signal?

• Support to multiple glitches within one execution

• FIFO to hold glitches in sequence

• Solution for synchronization issue

• External reset and boot trigger

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 9 of 35

Glitcher design

• Development platform: Die Datenkrake

• Open-source hardware and software toolchain

• Focus in reverse-engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

Glitcher design

• Development platform: Die Datenkrake

• Open-source hardware and software toolchain

• Focus in reverse-engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

• Timing-critical stuff

• PLL is available

• FIFO generation tools

• Wishbone bus

Glitcher design

• Development platform: Die Datenkrake

• Open-source hardware and software toolchain

• Focus in reverse-engineering and security analysis

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 10 of 35

• Timing-critical stuff

• PLL is available

• FIFO generation tools

• Wishbone bus

• Real-time OS

• UART for CLI

• Control and monitor

Glitcher design

• Core module

• Generates the clock signal and the glitches

• Multiplexer to switch through sources

• Hard to interface and/or configure

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 11 of 35

Glitcher design

• Main module

• Concept of delay, width and mode as glitch configuration

• FIFO for multiple glitches

• External target reset and trigger signals

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 12 of 35

Glitcher design

• Wishbone Wrapper

• Interface for the DDK

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 13 of 35

THE SETUP

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

The setup – target

• Atmel XMEGA-A1 Xplained

• ATxmega128A1 microcontroller evaluation kit

• Runs the code to be attacked

• Previously known (although not really necessary)

• No protections (real-time platform)

• Uses the glitcher as clock source

• 33 MHz for normal execution, 99 MHz for glitching

• Can be externally reset

• Can be externally monitored

• Boot trigger

• GPIO or UART for glitch detection

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 15 of 35

The setup – host

• Exact glitch position is unknown

• Multiple scenarios are valid

• Pipeline – fetch, decode, execute

• Thousands of combinations must be tested

• Brute-force attacks within a range

• A script is necessary

• Generate all the combinations within a range

• Try each one of them with N repetitions

• Log the result from the target (GPIO or Serial)

• Periodically executes a self-test

• Protection against instabilities

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 16 of 35

The setup

DDK Target

Boot trigger

Reset

Clock

Host
UART CLI UART

The glitcher
Runs the

code being
attacked

Monitors the
DDK and the

target

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 17 of 35

The setup

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 18 of 35

ATTACKING THE TARGET

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Attacking the target

• I – Baby steps (handmade AVR assembly)

• II – Proof of concept (handmade C code)

• III – Real world (3rd-party C code)

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 20 of 35

Baby steps – JMP (1)

Infinite loop

Should never be executed!

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 21 of 35

Baby steps – JMP (1)

• Multiple combinations are possible

• A pattern is visible

• Infinite loop makes it easy to hit the instruction

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 22 of 35

Baby steps – JMP (2)

Infinite loop

Second infinite loop

(with LEDs)

Should never be executed!

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 23 of 35

Baby steps – JMP (2)

• Two patterns visible

• Gaps represent the current iteration

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 24 of 35

Proof of concept – strcpy

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 25 of 35

Proof of concept – strcpy

1. Load the next byte and increase the source pointer

2. Store the byte and increase the destination pointer

3. Check if it’s zero – if not, continue the loop

• What happens if we glitch the LD or the AND instructions?

• Pipeline vs. NOP padding

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 26 of 35

Proof of concept – strcpy

• Not so many combinations to glitch it

• One specific instruction is being glitched

• Either LD or AND

• We must wait until he hit the null-byte

• The bigger the string, the more time we need to wait

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 27 of 35

Proof of concept – strcpy

• Success on extracting a “secret” string: 222222

• The null-byte is now 0x10

• Strong indicator for a LD glitch and not an AND instruction

• Can we repeat it? If yes, how far can we go?

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 28 of 35

Proof of concept – strcpy

“foobar” “222222”

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 29 of 35

Proof of concept – strcpy

“foobar” “222222” “111111”

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Proof of concept – strcpy

“foobar” “222222” “111111”

Byte 0x50 instead

of 0x10 as

separator

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Proof of concept – strcpy

“foobar” “222222” “111111”

Byte 0x50 instead

of 0x10 as

separator

Different results

with different

lengths

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 30 of 35

Real world – crypto libraries

• Practical Second-Order Fault Attack against a Real-

World Pairing Implementation (FDTC 2014)
Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane Krämer, Jean-Pierre Seifert

• “First practical fault attack against a complete

pairing computation”

• Pairing-based crypto attacked through hardware

• Same setup

• Extra features on the DDK for profiling

• Extra size for delay: 32 instead of 8 bits

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 31 of 35

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

Real world – crypto libraries

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 32 of 35

/* ... */

call fb4_mul_dxs

.LVL43:

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

.loc 1 247 0 discriminator 2

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

.LEB2:

.loc 1 486 0

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

/* ... */

/* decrement loop counter LSB, MSB */

subi r16,1

sbc r17,__zero_reg__

/* jump out of the loop */

breq .+2

/* jump loop begin */

rjmp .L2

/* clean stack */

subi r28,36

sbci r29,-2

out __SP_L__,r28

out __SP_H__,r29

pop r29

/* ... */

/* exponentiation call */

call etat_exp

CONCLUSION

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Conclusion

• A clock glitching platform was fully developed

• Both hardware and software are open-source

• Support to multiple glitches within the same execution

• Automatic attacking and monitoring

• Log of attacks and basic analysis of success/failure

• Automatic self-testing

• We successfully attacked an AVR microcontroller

• Attacks are repeatable and stable

• Real world targets can also be attacked in this setup

• Exiting loops and dumping memory are just examples

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 34 of 35

Conclusion

• Why is this a good solution?

• Cheap solution

• No need for big tools

• Non-destructive attack

• No need to open or probe inside the chip

• Did I say it’s open-source? :-)

Glitcher ARM: https://github.com/rgsilva/ddk-arm/

Glitcher FPGA: https://github.com/rgsilva/ddk-fpga/

DDK source: http://datenkrake.org/

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 35 of 35

PRACTICAL ANALYSIS OF EMBEDDED

MICROCONTROLLERS AGAINST CLOCK

GLITCHING ATTACKS

Ricardo Gomes da Silva

me [at] rgsilva [dot] com

@debugweshell

H2HC, Hackers to Hackers Conference, 11ª edição, 2014

Extra – state machine

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Extra – BRNE

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Extra – padded strcpy

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

Extra – New modes

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks

