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INTRODUCTION 

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks   



Introduction 

• Microcontrollers 

• Extremely popular, present nearly everywhere 

• Embedded devices 

• Driven by a clock signal 

 

• Clock signals 

• Digital circuits 

• Synchronization 
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Clock glitching 

• Non-invasive attack 

• No need for big tools 

• No need for opening the chip 

• It usually does not destroy the chip 

 

• Unexpected behavior in the clock signal 

• Changes in the frequency 

• Goal – exceed maximum frequency of the chip (by far) 
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Clock glitching 

• Clock is faster than data propagation 

• Instruction or data is corrupted 

• New data does not arrive in time 

 

• Security 

• Target one or multiple instructions – timing-critical attack! 

• Corrupted instructions (unknown/different opcodes) 

• CPU halts or instruction is skipped 

• AVR microcontrollers – unknown opcode is replaced by NOP 

• Control-flow can be altered 

• Bypass security measures 

• Exit or repeat loops 

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 6 of 35 



Clock glitching 
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GLITCHER DESIGN 
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Glitcher design 

• Modular design 

 

• Fully configurable glitches 

• Delay: when should we glitch? 

• Width: for how long? 

• Mode: how exactly is the output signal? 

 

• Support to multiple glitches within one execution 

• FIFO to hold glitches in sequence 

 

• Solution for synchronization issue 

• External reset and boot trigger 
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Glitcher design 

• Development platform: Die Datenkrake 

• Open-source hardware and software toolchain 

• Focus in reverse-engineering and security analysis 
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• PLL is available 

• FIFO generation tools 

• Wishbone bus 
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• Timing-critical stuff 

• PLL is available 

• FIFO generation tools 

• Wishbone bus 

• Real-time OS 

• UART for CLI 

• Control and monitor 



Glitcher design 

• Core module 

• Generates the clock signal and the glitches 

• Multiplexer to switch through sources  

• Hard to interface and/or configure 
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Glitcher design 

• Main module 

• Concept of delay, width and mode as glitch configuration 

• FIFO for multiple glitches 

• External target reset and trigger signals 
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Glitcher design 

• Wishbone Wrapper 

• Interface for the DDK 

 

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 13 of 35 



THE SETUP 
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The setup – target 

• Atmel XMEGA-A1 Xplained 

• ATxmega128A1 microcontroller evaluation kit 

 

• Runs the code to be attacked 

• Previously known (although not really necessary) 

• No protections (real-time platform) 

• Uses the glitcher as clock source 

• 33 MHz for normal execution, 99 MHz for glitching 

• Can be externally reset 

• Can be externally monitored 

• Boot trigger 

• GPIO or UART for glitch detection 
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The setup – host 

• Exact glitch position is unknown 

• Multiple scenarios are valid 

• Pipeline – fetch, decode, execute 

• Thousands of combinations must be tested 

• Brute-force attacks within a range 

 

• A script is necessary 

• Generate all the combinations within a range 

• Try each one of them with N repetitions 

• Log the result from the target (GPIO or Serial) 

• Periodically executes a self-test 

• Protection against instabilities 
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The setup 

DDK Target 

Boot trigger 

Reset 

Clock 

Host 
UART CLI UART 

The glitcher 
Runs the 

code being 
attacked 

Monitors the 
DDK and the 

target 
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The setup 
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ATTACKING THE TARGET 
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Attacking the target 

• I – Baby steps (handmade AVR assembly) 

 

• II – Proof of concept (handmade C code) 

 

• III – Real world (3rd-party C code) 
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Baby steps – JMP (1) 

Infinite loop 

Should never be executed! 
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Baby steps – JMP (1) 

• Multiple combinations are possible 

 

• A pattern is visible 

• Infinite loop makes it easy to hit the instruction 
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Baby steps – JMP (2) 

Infinite loop 

Second infinite loop 

(with LEDs) 

Should never be executed! 
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Baby steps – JMP (2) 

• Two patterns visible 

• Gaps represent the current iteration 
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Proof of concept – strcpy 
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Proof of concept – strcpy 

1. Load the next byte and increase the source pointer 

2. Store the byte and increase the destination pointer 

3. Check if it’s zero – if not, continue the loop 

 

• What happens if we glitch the LD or the AND instructions? 

• Pipeline vs. NOP padding 
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Proof of concept – strcpy 

• Not so many combinations to glitch it 

• One specific instruction is being glitched 

• Either LD or AND 

• We must wait until he hit the null-byte 

• The bigger the string, the more time we need to wait 
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Proof of concept – strcpy 

• Success on extracting a “secret” string: 222222 

• The null-byte is now 0x10 

• Strong indicator for a LD glitch and not an AND instruction 

• Can we repeat it? If yes, how far can we go? 

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 28 of 35 



Proof of concept – strcpy 

“foobar” “222222” 
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Proof of concept – strcpy 

“foobar” “222222” “111111” 
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Proof of concept – strcpy 

“foobar” “222222” “111111” 

Byte 0x50 instead 

of 0x10 as 

separator 
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Proof of concept – strcpy 

“foobar” “222222” “111111” 

Byte 0x50 instead 

of 0x10 as 

separator 

Different results 

with different 

lengths 
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Real world – crypto libraries 

• Practical Second-Order Fault Attack against a Real-

World Pairing Implementation (FDTC 2014) 
Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane Krämer, Jean-Pierre Seifert 

 

• “First practical fault attack against a complete 

pairing computation” 

 

• Pairing-based crypto attacked through hardware 

 

• Same setup 

• Extra features on the DDK for profiling 

• Extra size for delay: 32 instead of 8 bits 
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Real world – crypto libraries 
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/* ... */ 

call fb4_mul_dxs 

.LVL43: 

/* decrement loop counter LSB, MSB */ 

subi r16,1 

sbc r17,__zero_reg__ 

.loc 1 247 0 discriminator 2 

/* jump out of the loop */ 

breq .+2 

/* jump loop begin */ 

rjmp .L2 

.LEB2: 

.loc 1 486 0 

/* clean stack */ 

subi r28,36 

sbci r29,-2 

out __SP_L__,r28 

out __SP_H__,r29 

pop r29 

/* ... */ 

/* exponentiation call */ 

call etat_exp 
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Conclusion 

• A clock glitching platform was fully developed 

• Both hardware and software are open-source 

• Support to multiple glitches within the same execution 

• Automatic attacking and monitoring 

• Log of attacks and basic analysis of success/failure 

• Automatic self-testing 

 

• We successfully attacked an AVR microcontroller 

• Attacks are repeatable and stable 

• Real world targets can also be attacked in this setup 

• Exiting loops and dumping memory are just examples 
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Conclusion 

• Why is this a good solution? 

• Cheap solution 

• No need for big tools 

• Non-destructive attack 

• No need to open or probe inside the chip 

• Did I say it’s open-source? :-) 

 
 

 

 

Glitcher ARM:    https://github.com/rgsilva/ddk-arm/ 

Glitcher FPGA:   https://github.com/rgsilva/ddk-fpga/ 

DDK source:      http://datenkrake.org/ 
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Extra – state machine 

Practical Analysis of Embedded Microcontrollers against Clock Glitching Attacks 



Extra – BRNE 
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Extra – padded strcpy 
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Extra – New modes 
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