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Abstract

Clock glitching attacks are one of the different types of hardware fault injections studied
nowadays. By glitching the clock, it is possible to change the target’s hardware behavior,
either by corrupting or simply skipping CPU instructions. Since the software is not
prepared to handle a device that has been tampered with, an attacker can exploit such
vulnerability and take over the control flow of the program. Multiple attacks can then
be performed, such as forcing the device to exiting loops or dump its own memory.
This work applies such technique against AVR microcontrollers by implementing a

modular glitcher environment. Such environment allows not only for fine-tuning of at-
tacks, but also a brute-force algorithm for finding the glitching range to be implemented.
By executing multiple repeatable experiments, both on handcrafted and compiled code,
it demonstrates that such architecture is vulnerable against these attacks by introducing
faults that were not expected and cannot be handled by the software. The implications
of this regarding the security of the program are discussed in this work. Additionally,
a critical analysis of the disadvantages and issues of the approach used and how it can
be further improved is provided.
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Zusammenfassung

Clock-Glitching-Angriffe sind eine der verschiedenen Arten von Hardware-Fehler-
Angriffen, die heutzutage untersucht werden. Das Glitchen der Clock ermöglicht es, das
Verhalten der angegriffenen Hardware zu verändern. CPU-Instruktionen können auf
diese Weise entweder verändert oder auch komplett übersprungen werden. Da die Soft-
ware nicht darauf ausgelegt ist, auf Manipulationen an dem Gerät zu reagieren, kann
ein Angreifer diese Situation ausnutzen und die Kontrolle über den Programmablauf
übernehmen. Viele verschiedene Angriffe können damit durchgeführt werden: Zum
Beispiel können Schleifen vorzeitig abgebrochen werden oder das Gerät dazu gebracht
werden, den gesamten Speicherinhalt auszugeben.
In der vorliegenden Arbeit werden diese Techniken gegen einen AVR Mikrocontroller

angewendet. Hierzu wurde eine modulare Umgebung entwickelt, die das Glitchen der
Clock ermöglicht. Diese Umgebung ermöglicht nicht nur eine präzise Einstellung der An-
griffsparameter, sondern auch das Ermitteln des genauen Zeitpunkts, an dem der Glitch
eingefügt werden soll, durch eine Brute-Force-Suche. Indem sowohl auf angepasstem
als auch auf kompiliertem Code verschiedene reproduzierbare Experimente wiederholt
werden, zeigt diese Arbeit, dass die untersuchten Architekturen angreifbar durch solche
Angriffe sind, in denen unerwartete Fehler eingebracht werden, mit denen die Software
nicht umzugehen weiß. Die Auswirkungen, die diese Angriffe auf die Sicherheit der Pro-
gramme haben, werden in dieser Arbeit diskutiert. Außerdem werden die Eigenschaften
und Nachteile dieses konkreten Ansatzes kritisch hinterfragt und der Frage nachgegean-
gen, wie er verbessert werden kann.
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1 Introduction

Microcontrollers are extremely popular nowadays, being present in numerous devices
and systems. They are designed to be embedded into small systems and interact with
the environment, either directly through sensors and acuators, or through other digital
systems. The most common example of embedded microcontrollers are smart cards,
used for numerous scenarios, such as personal identification and access control. On
such devices, the software limits the device’s interaction with the outside world, such
as limiting which how much data can be obtained from it upon request. However, such
devices assume that they have not been tampered with, neither that it was previously
modified in a manner that the system behaves differently than original (i.e. the system
behaves nominally).
Previous studies demonstrated that smart-cards and microcontrollers in general are

vulnerable to fault injection attacks, where, by directly injecting a fault through the
hardware, it is possible to extract information [KK99, AK96, BGV11, KK99] or bypass
security controls on the executing code [And01]. In software attacks, the device is
attacked from the software perspective, meaning that the issue is on the code. However,
with hardware attacks, the assumption that the hardware is stable and safe is no longer
true, since the device can now be controlled from the hardware perspective. Such
attacks can be done in precise moments or with specific methods to target different
parts of the hardware, such as the CPU’s instructions and registers or the device’s
memory. This allows an attacker not only to change the behavior of the program, but
also to extract data or bypass software protections by simply attacking specific regions
of the hardware. Since the code does not expect that the hardware is compromised, it
continues to execute as normal. This introduces a security issue since the code can now
be modified in realtime, allowing an attacker to be able to change the original behavior
of the program. The number of possibilities that a fault injection attack opens are not
small: it could be used to extract data from the device, bypass security features, skip
or repeat loops, and so on.
One of the most common fault injection techniques, called clock glitching, is analysed

in this work, where a fault is injected on the clock signal used by the microcontroller.
It consists of injecting small faults into the clock signal with the goal of glitching the
device’s CPU. If successful, the CPU can either skip code instructions, or compute the
wrong data, allowing an attacker to change the execution flow of the code.
How clock glitching attacks work and how the target device was prepared and selected

are described in Section 2, being followed by the description of the dedicated hardware
used on the attack in Sections 3 and 4. Multiple successful experiments were performed,
their results described and explained in Section 5. A discussion regarding what was
achieved with this work and how it could be further improved is provided in Section 6,
followed the conclusion of this work in Section 7.
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2 Background

In this section, the necessary background information for understading this work is
provided. Initially, fault injection and glitching will be discussed, and later the other
devices involved in the experiments.

Glitching
Glitches are result small and transient faults in a system and can be caused both by
environment interference or by fault injection experiments. By deliberately creating
faults in the system, we disrupt its behavior in a way that might be exploitable for an
attacker. Examples of typical targets for glitching are the clock signal [BGV11], the
voltage output on the power supply [ABF+03], temperature changes and electromag-
netic radiation [CPB+13]. Glitching is also commonly classified as a non-invasive fault
injection attack since they don’t require any modifications on the hardware itself.
In this work, clock glitches are used to attack a microcontroller with the goal to

analyse how it reacts against such scenarios. By glitching the clock in precise moments,
it is possible to hit one or multiple clock cycles of an instruction. If successful, the
attack could lead the microcontroller to a vulnerable state, where an attacker could
exploit either by executing another attack, or by already analysing the current state,
such as reading leaked data.
A clock glitch consists of increasing the frequency of the circuit clock for a short

amount of time (usually one clock cycle), as shown in figure 2.1. Since the circuit
cannot always handle the higher clock frequencies properly, it might latch its registers
before a new value has arrived to them [BECN+06, KK99], which allows an attacker to
take over the control flow of the program.

Microcontrollers

Microcontrollers consits of a processor (CPU) and random-access memory (RAM), as
well as additional peripherals and I/O. They are essentially computers programmed to
execute code to control or communicate to a device and they are present on innumerous
peripherals and products nowadays, making them extremely popular. However, what
differentiate them from microprocessors is that they have all of this in one package,
together with an embedded non-volatile memory, which allows the code to be executed
to be stored directly on the microcontroller. Since their goal is to be embedded into
devices or systems, they do not the usually have input and output peripherals as a
normal computer. Instead, they have digital pins that can be used for signaling and
interfacing other devices.
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2 Background

Even though microcontrollers can be used and applied in multiple scenarios, some have
specific features that improve their capabilities or performance in different environments.
For example, microcontrollers can have UART (Universal asynchronous receiver/-
transceiver) ports, which allows easy serial communication with external devices, cryp-
tographic coprocessors, improving the performance of algorithms for encrypting and
decrypting data, timers and counters (such as RTC, Real-time clock, peripherals), watch-
dog timers, and others. Such peripherals are considered part of the microcontroller since
they are addressable through registers in the executing code, allowing easy access with-
out having to care about the interface between the microcontroller and the peripheral.
In this work, a microcontroller with a single-level pipeline was used. This means

that this CPU is able to fetch and decode the next instruction while the previous is
executing. Although this increase the resource usage on the hardware level, this improves
performance (in terms of MPIS - million instructions per second, since it allows the next
instruction to be read as soon as the previous has finished, avoiding the extra time for
the instruction fetch. Note that, however, instructions that need to operate with the
memory have additional executing cycles, as shown on figure 2.2.
Note that, in this work, the microcontroller is also a RISC (Reduced instruction set

computing) CPU. This means that it is generally able to execute instructions within
one clock cycle, although instructions that operate with memory can take additional
cycles, as shown on 2.2. This is important since it makes glitching fast instructions (i.e.
instructions that take one clock cycle) more difficult, since it is necessary to hit the exact
instruction within one clock cycle. The preciseness of a glitcher device in such scenarios
is critical, as any delay or clock drift could make it miss the instruction, attacking either
the previous or the next one.
Finally, from the point of view of clock glitching, however, having a pipeline has

a negative effect. Since the entire CPU uses the same clock signal for each stage of
the pipeline, glitching the clock might cause not only the corruption of the current
instruction, but also of the next one. Therefore, when glitching the clock, this has to
be kept in mind, since usually one might not want to corrupt the next instruction (as
it is part of the program logic and could be critical for the glitch to have any effect).

3



2 Background

0 1 2 3 4 5 6

normal clock

glitched clock

Figure 2.1: Clock glitching example. The highlighted areas indicate glitched clock cycles,
where there are multiple rising edges instead of one. Note, that both before
and after the glitch the clock is set to its normal frequency, allowing the
device to operate normally before and after the attack.

0 1 2 3 4 5 6

First instruction IF ID EX MEM WB

Second instruction IF ID EX MEM WB

Figure 2.2: This image describes how a single-level pipeline works. The three first stages
consist of fetching the instruction from the cache (IF - Instruction Fetch,
decoding the instruction (ID - Instruction Decode) and finally executing it
(EX - Execution). However, if the instruction needs to operate memory,
either for read or write, one extra clock cycle are required for such operation
(MEM - Memory access). Finally, if the instruction needs to write back its
values to registers (e.g. arithmetic and memory load instructions), it is done
on the last stage (WB - Write Back). [HP11]
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3 Setup

This section introduces the equipment used in subsequent experiments, providing also
a brief description and specification of their features. How they are integrated to create
a glitcher will be further discussed in Section 4.

Microcontroller
There are multiple types of microcontrollers on the market, each one with different fea-
tures and capabilities. For this work, however, a more generic microcontroller produced
by Atmel was selected - the AVR XMEGA A family. These are low power, high perfor-
mance and peripheral rich 8-bit RISC microcontrollers based on the AVR architecture
[Atm12]. For easy development and testing, an XMEGA-A1 Xplained was used, which
is an evaluation kit provided by Atmel for evaluation of the ATxmega128A1 microcon-
troller [Atm11] that provides a ready-to-use environment, facilitating the experiments.
By using an evaluation kit instead of the microcontroller directly, there is no need

to consider issues caused by an incorrect device setup (such as wrong wiring). The
board also contains pin headers, which facilitates creating an interface between the
microcontroller and other devices (e.g. AVR programmers), among other devices, such
as a light sensor, speakers, buttons and LEDs. Not all of the available features on this
board were used in this work, but they are important and useful when preparing the
device for the first time, since they provide feedback to troubleshoot any issues.

Die Datenkrake
For clock glitching it is essential to have very precise timing. For this reason, dedicated
hardware must be used, and in this work, Die Datenkrake was selected for this task.
Die Datenkrake, or DDK, is an open source security-focused development platform. It
consists both an ARM CPU and a FPGA (Field-programmable gate array), each one
being responsible for a different task in this work. It also contains 8 I/O channels which
allows easy and parallel analysis and communication with multiple devices [NS13], as
shown on Figure 3.1.
Due to the necessary timing characteristics of a clock glitcher, the DDK’s FPGA

was used to generate all the necessary clocks and signals. Although the signal could
be generated by toggling an output directly on the ARM CPU, CPU interruptions and
parallel tasks might affect its performance, resulting in inconsistent timing. Additionally,
the switching frequencies of the I/O are a fraction of what the FPGA is capable of, and,
since the glitching clock is faster than the normal one, any interruption on this algorithm
could affect the glitcher’s precision by creating unexpected delays. Another reason to

5



3 Setup

Figure 3.1: Die Datenkrake hardware layout (version 1.0). The board provides easy
access to GPIO pins through RJ45 connectors, which also provide power.
Therefore, they can be used both for data and driving level translation
circuits, in case the device does not use a standard I/O interface. [NS13].
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3 Setup

use the FPGA instead of the ARM is the fact that the clock has to be synchronized
with the target’s clock. The overall clock drift between the glitcher and the target
would result in imprecise glitch timing. Therefore, to avoid such issues, it is easier to
use the FPGA to produce the target’s clock, feeding it externally with a controlled
and synchronized signal. To generate synchronized clocks, a PLL (Phase-locked loop)
provided on the FPGA is used to output three different signals (the DDK’s internal
clock, the target normal clock and the glitching clock), providing the guarantee that all
of them have their rising edges synchronized and that there is no delay or drift between
them. Finally, to keep both the ARM CPU and the FPGA synchronized, the FPGA is
driven by a clock provided from the ARM CPU. By using this setup, it is possible to
guarantee no clock drifts between them as well.
The DDK’s CPU runs an RTOS (Real-time operating system) which is responsible for

handling all the less time-critical operations in multiple parallel tasks, such as handling
the UART ports provided by the CPU and the CPU-FPGA bus signaling. The DDK
software, therefore, runs directly on the board. To avoid requiring external software or
hardware to be able to use the DDK, a console is provided on the UART port available
through the USB port. This console will be later used in this work to control the
glitcher by sending commands to configure and run experiments. The console interface
is designed also to be able to handle the FPGA, such as reading and write values to
addresses, which will be later converted to Wishbone commands through a bus that
connect both devices. Such addresses are decoded and point to each available DDK
channel based on their most-significant bits, while the least-significant are the specific
Wishbone address to be read or written to. Therefore, it is possible to execute compiled
C code on the ARM that directly controls any module on any channel on the FPGA,
allowing a high level of automation without requiring the Verilog FPGA code to be
rewritten or modified at all. Finally, this can also be considered hardware/software
codesign, where a product or device hardware and software are developed together with
a high level of integration between them.

Wishbone Bus
The DDK FPGA code is divided into multiple independent modules. To allow a stable
and easy communication between them, the DDK architecture uses the Wishbone Bus
for internal communication. This bus is an open-source computer bus that allows inter-
action between modules without the necessity of each one knowing the internals of the
other, allowing a simple and transparent module integration.
For this work, it is not necessary to understand the technical details of the Wishbone

bus. However, it is interesting to know that read/write operations can be done in one
clock cycle [Ope10], allowing a fast data transfer between modules. It also uses a strobe
signal to indicate which module is being accessed, while the others are kept idle. Each
Wishbone-compatible module has four basic input signals: adr_i (address input), dat_i
(data input), we_i (write enable) and stb_i (strobe input). This allows another module
to specify which address in the module it wants to access, either for read (we_i as 0) or
write (we_i as 1), and which data it wants to send together with the operation.

7



3 Setup

Once activated (stb_i as 1 for one clock cycle), the module can handle the inputs,
doing the necessary logic. Note that the module must respond within the next clock
cycle, whenever if a complex operation takes one or more cycles to conclude. There are
two output signals: ack_o (acknowledge) and dat_o (data output). The first is used to
indicated that the previous operation was valid and acknowledged (i.e. it was a valid
operation, such as having a valid adr_i), while the second one is to indicate the return
data.
Note that, in the DDK, both data and address are 8-bit long. Higher values can be

written, as it will be shown further in this work, but the data has to be splitted in
8-bit chunks. Finally, as previously noted, on the DDK the address is used to indicated
not only which operation should be performed, but also which channel should perform
it, being the four most-significant bits the channel and the four least-significant the
operation. In the modules further discussed in this work, however, the addresses will be
also called registers, since they usually target specific internal registers in the modules,
writing and reading from them instead of representing an operation by themselves.

8



4 Glitcher development

For analysing the effects of clock glitching against microcontrollers, a complete test
environment was created. It consists of three main parts: the glitcher, the microcon-
troller and an external monitor. This section describes in details not only how such
components were designed and implemented, but also how they interface each other for
creating the test environment.

Glitcher
The glitcher is the most important part of this work, and for such reason its design is
the most sophisticated one. From the point of view of the environment, the glitcher is
one single module. However, internally, it’s made of three self-contained modules: the
core, the main module and the Wishbone interface. This separation was done not only
with the goal of keeping the glitcher easy to maintain and modify, but also to keep it as
modular as possible. The layout is based on tasks - each module is responsible for its
own task and can be used and tested separately.

Glitcher’s core
The core of the glitcher is the simplest and lowest-level module in the setup. Its inputs
are the normal unglitched clock (clk_in), the clock used for glitching (clk_gl), an
enable signal to activate the module (en) and a 8-bit mode of operation (mode). The
only output is the glitched clock (clk_out), which is only changed when the module
is enabled (when not, it outputs the same as clk_in). The figure 4.1 describes the
module.
The core is also a combinational logic circuit. This means that it doesn’t depends

on its main clock, being the output only a function of the inputs. This is important
because the glitcher must be completely time-independent, being able to be enabled and
disabled whenever possible.
The output is provided depending on the current value of the mode, being selected

by a multiplexer, as shown in figure 4.2. There are five available modes:

• bypass: the signal is not altered and clk_in is output on clk_out.

• zero: the output is kept low (logic zero).

• one: the output is kept high (logic one).

• not: the output is the result of clk_in through a NOT gate.

• clkgl: the output is the same as clk_gl.

9



4 Glitcher development

Figure 4.1: Core module of the glitcher. Once activated, this module changes the clk_-
out accordingly, being configured by the mode[7:0] input. This module
remains modifying the output until it is no longer enabled, being completely
independent from any of the clock inputs (i.e. this module works by combi-
natorial logic).

Figure 4.2: Multiplexer inside the core module of the glitcher. This allows easy selection
of which source will be output from the core by changing the value provided
in mode[7:0]. The available sources are the normal clock (clk_in)

, a logic zero (zero), a logic one (one), the normal clock through a NOT gate and the
glitching clock (clk_gl).

10



4 Glitcher development

In most of cases, only the last mode will be used, since it outputs the clock used for
glitching. However, as it will be later described, a bypass might be used to indicate a
glitch that does nothing, but that stills count time, which is useful for synchronising the
target and the glitcher.

Glitcher’s main module
For glitching purposes, the core module is enough, since it provides all the necessary
steps for generating a glitched clock signal. However, to interface it, it would be nec-
essary to control the timing of enabling and disabling it. Such timing is critical, since
usually a glitch is fast and short, as in a few clock cycles. For such reason, the main
module was designed, as shown in 4.3. Its goal is to provide an easier interface to control
for how long should the core stay enabled, as well allowing to run glitches in sequence.
For each glitch, there are three values that must be specified: a delay, the width of

the glitch and the mode. The last one must be one of the modes available on the core
module. The delay is a 16-bit long value that indicates how many clock cycles should
the glitcher wait before glitching, while the width is a 8-bit long value that indicates for
how many clock cycles should the core be enabled. This allows a precise glitch: after
waiting for a few delay cycles (without modifying the clock signal), glitch for width,
returning back to the normal clock after that.
Since in most of the cases more than one glitch might be necessary, a FIFO (First

In First Out) queue was implemented, where each element is a 32-bit long value that
represents the mode (8 bits), the delay (16 bits) and the width (8 bits) of each glitch
operation. The main module is responsible for reading this FIFO as soon as it gets full,
executing all glitches specified on it. However, before reading the FIFO and executing
the glitches, the target must be reset and the glitcher must wait until it boots - tasks
that will be further explained in this section and are not relevant for the understanding
of this module. The whole process can, therefore, be implemented as a state machine,
shown in figure 4.4. It has the following states:

• idle: the module is waiting to be activated, which happens when the FIFO is full.

• wait: the module is waiting for the target to reset.

• read: the module is reading the next entry from the FIFO.

• delay: the module is running the delay specified.

• width: the module is glitching (the core is enabled during this state).

The state machine is trivial and sequential, since it just has to keep reading the FIFO
until it is empty. After reading the new glitch settings, the module will enter the delay,
width or read state, depending on the settings. If the delay duration is zero, the glitcher
will glitch straight away (entering the width state). If a width was not specified, the
glitcher will execute only the delay. This is useful when one wants to wait for a very
long time before glitching. Finally, if both delay and width values are zero, then nothing

11



4 Glitcher development

Figure 4.3: Main module of the glitcher. Note that there is an instance of the core
module inside the main module. This allows this module to have complete
control of the core, being now responsible for enabling and disabling it when-
ever necessary. The clock signals (clk_in and clk_gl), however, are wired
directly to the core module, being used directly as provided. Wires to handle
the reading process of the FIFO (fifo_in[31:0], fifo_empty, fifo_full
and fifo_re) are also provided, together with a trigger indicating that the
target has finish its boot (board_ready).

must be done - it’s exactly like a NOP CPU instruction. In this case, the module will
just go back to the read state.

It’s important to note that each state transition takes one clock cycle. This adds an
internal delay for the glitcher to work, so even when the delay value is set to zero, there
will be a small gap with normal clock before glitching. Also, when glitching for one clock
cycle, multiple rising edges will be triggered, which affects the glitcher’s precision to hit
only one instruction. This means that, due to all the internal delays, the glitcher takes
a few clock cycles to start and glitches for more clock cycles than it should. During the
experiments, however, the glitcher’s performance and efficiency were not affected, and,
as will be shown in Section 5, it was perfectly possible to glitch the targeted instructions.
This module, just like core module, receives as input both clocks, clk_in and clk_gl.

Those clocks are actually bypassed straight to the core, which is instantiated inside
the main module. It also receives a reset signal (rst), which is used to reset the
whole module, its counters and variables. The other inputs are related to the FIFO
(fifo_in[31:0], fifo_empty and fifo_full), except for the last one, board_ready,
which is an external signal used to indicated that the target has finished its booting
process.
In terms of output, the main module provides outputs the direct result from the core,

clk_out. It also outputs a ready signal, ready, used to indicated that this module is
on idle state and ready to be used. The rst_o output is used for resetting the target,
which will be later discussed. Finally, the main module has also a fifo_re output,

12



4 Glitcher development

which is an internal signal used for reading the FIFO module, and a glitch_en signal,
which is used to indicated that the core is enabled. This last output will be later used
for debug purposes.

Glitcher and the Die Datenkrake
The glitcher, as described until now, works as a standalone module and is not integrated
to the Die Datenkrake. The reason is because internally the DDK uses a Wishbone bus
interface to communicate its modules, which is not available yet on the glitcher. Because
of that;, it’s necessary to create a wrapper around the main module, allowing the glitcher
to be used inside the DDK, as shown in figure 4.5.
The first important difference on this module is the presence of three clock signals:

clk_i, clk_in and clk_gl. All three clocks are provided by DDK’s PLL, which gener-
ates 33, 50 and 99 MHz signals. The first clock is the DDK’s system clock - this module
and any other on the platform has to run with the same clock, which is of 50 MHz. The
second is for the target’s normal operation - since the target runs at a lower speed than
the DDK, such clock must be provided. Finally, the third is the clock used for glitching,
which is of a higher frequency than the second. While the system clock runs at 50 MHz,
as it is clear in figure 4.5, the clock used for the driving the target is also used as the
"system clock" for the main and core modules. The reason is because the glitcher has
to be synchronized with the target, otherwise the clock-based internal counters would
be out of sync. Therefore, there are two clock domains: the DDK’s, at 50 MHz, and
the target’s, at 33 MHz.
With two clock domains, operations that are clock-dependent between this module

and the main won’t work properly anymore, since one is running faster than the other.
However, the glitcher works by reading a FIFO which contains all the glitches that must
be executed in sequence. This is a common technique for synchronizing between different
clock domains, since the FIFO module is able to be written using a clock different than
the one used for reading. This is extremely important in this scenario, since this module
can now write to the FIFO at 50 MHz (since it runs at the system clock speed), while
the main modulde can read it at 33 MHz (since this is its "system clock", being actually
the target’s clock).
Note that, on this module, there are no input wires for glitch settings (delay, width or

mode), neither a way of directly writing to the FIFO. The reason is that everything now
must use the Wishbone interface, including such tasks. Therefore, Wishbone registers
were created, and by writing to them by specifying their addresses, it’s possible to write
to the FIFO. The list of registers is shown on table 4.1. Notice that, since each FIFO
element is 32-bit long, it’s necessary to use four 8-bit registers to write the values to
the FIFO, since this is the width of data, as explained in Section 3. For simplification,
when writing the last eight bits (GLITCH_QUEUE_3), the module automatically writes to
the FIFO the value of all other registers together, forming a 32-bit long FIFO element,
as shown in figure 4.6. The last two registers are used only for checking the status of
the FIFO, which is used for self-testing, as it will be further discussed.
The glitcher wishbone interface has one extra input, ch2_in[5:0], which corresponds

to the input data from DDK’s channel 2, and two extra outputs, ch1_out[5:0] and
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4 Glitcher development

Figure 4.4: State machine of the main module. The glitcher begins on the idle state
(green), changing to wait (yellow) as soon as the FIFO is full. After a
trigger from the target indicating that its boot process has completed, the
glitcher change to the state read (orange), from where it will start reading
glitch configurations from the FIFO, alternating between the read, delay
(pink) and width (red) states. Note that all four possible combinations are
considered in this state machine: a "NOP glitch" (i.e. no delay and no width),
a pure delay operation (i.e. no width), a direct glitch (i.e. no delay) and a
delayed glitch (i.e. both delay and glitch width are present). After each
operation, the next one on the FIFO is fetch, repeating the process. Finally,
after the FIFO is empty, the glitcher returns to the idle state.
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4 Glitcher development

Figure 4.5: Wishbone interface of the glitcher. As shown in the image, this is a wrapper
that allows the main module to communicate using the Wishbone protocol.
Therefore, all configurations must be properly sent through the bus, being
then propagated to the inner modules whenever necessary. Note also the
existence of DDK channel input (ch2_in[5:0]) and output (ch1_out[5:0]
and ch2_out[5:0]) ports, which will later be used to create an interface with
the target, as well as the clk_out, exposed to facilitate the debug process.

Register Description
GLITCH_QUEUE_0 Sets bits 7 to 0 of the new element
GLITCH_QUEUE_1 Sets bits 15 to 8 of the new element
GLITCH_QUEUE_2 Sets bits 23 to 16 of the new element
GLITCH_QUEUE_3 Sets bits 31 to 24 of the new element and queue it to

the FIFO
GLITCH_FIFO_EMPTY Indicates if the FIFO is empty
GLITCH_FIFO_FULL Indicates if the FIFO is full

Table 4.1: List of Wishbone addressable registers and their functions.
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4 Glitcher development

Figure 4.6: Relation between each 8-bit Wishbone register, 32-bit FIFO element showing
the meaning of each slice. Note that, since the delay is a 16-bit element, it
requires two slices from the 32-bit FIFO entry.
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ch2_out[5:0], which correspond to the output data from DDK’s channels 1 and 2.
Note that, each pin from a DDK channel is bidirectional and can be configured in
runtime, since it uses tristate logic to select if a wire is connected as input or output.
Therefore, not all wires from ch2_in[5:0] are used for input, just like not all wires
from ch2_out[5:0] are used for output, being them manually adjusted on the channel
configuration inside the DDK top module (which is not part of the scope of this work).
A complete description of both channels and the signals indicating the ones used for
input and the ones used for output is provided on table 4.2.

With a few exceptions, most of the signals are output by the DDK on those channels
are used for debugging purposes. This was necessary during the development of the
glitcher to be able to detect failures in the modules, missing signals and crashes. How-
ever, as it will be further discussed in Section 6, such debug pins can now be removed,
reducing the number of channels necessary for the glitcher. Finally, further in this sec-
tion it will be explained how such pins are used to create the interface between the
DDK and the target, allowing the former to control, glitch and receive feedback from
the later.
The DDK software was also modified to allow an easier control of the glitcher. As

previously mentioned, the code running on the ARM processor interfaces with the the
FPGA, and, through that, it is possible to use the ARM to control modules on the FPGA
side of the board. The glitcher so far has been developed only on the latter, meaning that
there is no interface with the external world besides the DDK framework. The original
DDK code allows reading and writing into addresses that point to Wishbone registers
into each channel. However, for facilitating writing elements into the FIFO, checking the
glitcher status and performing tests, custom functions were developed. Such functions
use the original DDK framework functions regarding interfacing the FPGA, but they
offer a better user interface for one controlling the DDK through the console, allowing
easier and faster tests and debug of the whole glitcher setup.

Target
The AVR microcontroller is the target in this work, and since it has to interact with
the other components of the test environment, some modifications are necessary. Even
though most modifications are only in software, they are necessary to activate hardware
features necessary both for the experiments and the interface between the target and
the DDK.

Target setup
The microcontroller as target used in this work is able not only to run with an external
clock, but also from an internal RC oscillator, which is the default. For this reason,
the first step is to change the clock source to XOSC, which is the external one. Such
external clock can be provided by different devices, such as a quartz crystal oscillator
(commonly used to provide a more accurate clock source to the microcontroller) or an
external oscillator (e.g. the glitcher’s clock output generate on the DDK). This has to
be first operation, since if the external clock is not working, there’s no point booting
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Channel Pin Direction Name Description
1 0 out clk_out Clock output from the core
1 1 out clk_in Clock input from the core
1 2 out - not used
1 3 out ready Main module ready signal
1 4 out glitch_en Indicates the width state on the

main module
1 5 out delay_en Indicates the delay state on the

main module
2 0 out rst_o Reset output, used for reseting the

target
2 1 in en_i Indicates that the board is ready

(input from the target)
2 2 out board_ready Indicates that the board is ready

(same as en_i)

Table 4.2: Description of DDK’s channels 1 and 2 and its relation to the glitcher.

the microcontroller. Note that, even though the microcontroller has a PLL capable of
multiplying the clock source frequency, it was kept disabled during the experiments, so
that nothing would interfere in the clock provided by the DDK (which could affect the
glitching).
To allow communication between the DDK and the target, the microcontroller’s GPIO

(General Purpose Input/Output) as configured accordingly. The GPIO consists of mul-
tiple pins on the board that can be toggled between logic zero and logic one, which
is good for signaling. Note that, this is bidirectional: in case the DDK wants to sig-
nal something to the target, it would be also possible. However, in this work, only
communication in the opposite direction (from the target to the DDK) was used.
The second method of communication is by utilizying an USART (Universal Syn-

chronous/Asynchronous Receiver/Transmitter) port on the board. An USART port
works by serial communication through TX (transmitter) and RX (receiver) pins. This
can be used for transmitting larger chunks of data, such as strings. It is also easier to
use than the GPIO in this setup, since the GPIO has to be read through the DDK,
while the USART can be read directly on an external monitor.
Note that, all of this changes are done by software, being only necessary to add

the code for such tasks. This allows easy changes on the settings, requiring only the
microcontroller to be reprogrammed. The rest of the code, however, can be used as
usual, without requiring extensive modifications.

Target-DDK interface
After the glitcher’s FIFO is full, the glitcher’s main module remains in wait state until
it is triggered by the I/O of the target device, indicating that the target is ready. While
changing to such state, the glitcher sends an external signal of reset, which is connected
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directly to the target. The target then, is kept at reset for 255 clock cycles, giving the
microcontroller sufficient time for the reset signal to propagate to all registers of the
device. After the reset is finished, the microcontroller starts its normal boot process,
which can take a random number of clock cycles.
It’s important to note that, although the code doesn’t change during resets, and that

the AVR architecture is simple, the amount of time required for the target to boot varies.
One of the possible reasons is the fact that the external clock requires a synchronisation
step, which can depend on various factors, such as the environment, interference and
wiring. This process can take oscillate the number of clock cycles necessary for booting
the target in the factor of thousands of cycles, making turning impossible to know
exactly how long it will take.
The trivial solution for detecting the boot is to make the target trigger the attacker,

indicating that the boot was successful and that it is ready to continue. In this environ-
ment, after the microcontroller has finished booting, it sends a signal to the DDK, which
receives on the en_i wire on channel 2. Finally, this signal is then processed through an
edge detector, since we want to detect when it is toggled. This allows the main module
of the glitcher to leave the wait state and go to read, where it starts reading the FIFO
and executing the glitches according to the order that they were queued.

External monitoring
The necessary delay and glitch duration depends entirely on the code and the target
instruction. Therefore, testing in sequence multiple combinations is highly desirable,
since it allows extensive tests without human interaction. The solution for this was to
create an script that not only generates the combination of all possible glitches inside a
range and tests them, but also verifies each one if it was a proper glitch or not.
The first step is to generate a set of glitches to test. This can be done based on any

criteria, but usually brute force is easier and more effective. The list can be formed both
by single glitches (one glitch and then only bypass glitches - glitches formed by no delay
and no width) and multiple glitches (more than one glitch followed by bypasses). Such
combinations are usually created inside a limited range, since both the code and the
number of clock cycles of each instruction are usually know. It’s important to note that
the number of combinations affects the duration of the experiment - dozens of thousands
can take more than one day to complete. Each combination should be reproducible,
which means that the same result must be obtained multiple times. Because of that,
it’s recommended to run each combination multiple times, definying an accuracy based
on the stability of the glitch.
For each test, the commands for queueing the FIFO are passed to the DDK, which

then executes the whole process by itself, including the target reset. The result is then
checked by validation functions, which return whether or not the glitch was successful.
Note that this step depends entirely on the code. Some of the experiments describe on
Section 5 utilize the GPIO pins to activate a bit on one of the unused DDK channels,
which then can be read and checked. However, the last experiment of this work used
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the USART to check the validity of the glitch by reading the value received on the serial
line and analysing it.
Finally, a dummy run (i.e. normal execution without glitching) is done on the target

between glitches. The goal of such execution is to avoid one glitch to interfere with
the next one. Since after the glitch is complete the target is reset, a normal execution
would allow the detection of crashes on the microcontroller, which could not be detected
when already glitching the device (i.e. it would not be possible to differentiate between
a successful glitch or a glitch caused by an internal crash). Even though not critical, it
is a good pratice to add this extra execution to avoid false positive results when running
different glitch combinations in sequence. Note that, this process is also done within a
predefined interval in a self-test procedure which verifies if either the DDK or the target
crashed or is having any issues.
The self-test procedure for the DDK is simple. By running a dummy execution on

the target and verifying the FIFO status, it’s possible to detect possible wiring faults
or crashes on the state machine. After running a dummy execution, the FIFO should
be empty, since the DDK executed the whole glitch process. If not, it means that the
DDK did not receive the signal indicating a target boot. Most of the cases, a simple
reboot of all devices is sufficient to fix the problem. The target self-test is also simple,
being necessary only to run a dummy execution and the glitch validation function. The
function must return that the glitch is not valid, since no glitch was executed. If the
opposite happens, either the validation function or the microcontroller is not working
properly.
The script is also responsible for logging each test, its result and accuracy. This

information can be later analysed and used to create another attack, such as a second
glitch after the first. This then can be repeated, creating sequential glitches as long as
necessary for attacking the target. Such scenario is demonstrated in Section 5, where
the strcpy C function is sequentially glitched based on the results of previous glitches.
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This work analysed three scenarios against glitching: unconditional loops, conditional
loops and the strcpy function from the standard C library. The first two were selected
with the goal of demonstrating that loops can be glitched once their branch instructions
are corrupted. The last one is done to demonstrate that C code can also be glitched,
and also to demonstrate a real-world scenario where a simple function allows leakage of
data once glitched.

Unconditional loops
For the first experiment, it was easier to glitch unconditional loops without code inside
(infinite loops). For that, both jumps relative jumps instructions were studied and
tested. For a more realistic analysis, code with multiple loops and code inside them
were also experimented with.

Jumps
A jump instruction is used to change the current position of the program counter,
pointing it to somewhere else in the memory. It consists of loading the specified value
into the internal CPU register PC, changing the control flow of the code. The instruction
JMP does this task on AVR microcontrollers, and it takes three clock cycles [Atm98]. It
is important to note that this instruction is longer than other instructions: while most
of the instructions on the AVR architecture are 16-bit long, this one requires 32 bits.
The reason why instruction requires twice as many bits is because it holds a full 22-bit
memory address on it, which does not fit inside one single 16-bit instruction. Therefore,
for this instruction to be execute, it requires two clock cycles for fetching the full address
(6 most-significant bits on the first cycle and the 16 least-significant bits on the second)
and one extra clock cycle for loading it into the program counter [Atm10].
For glitching this instruction, an infinite loop using it was created, as shown in code

5.1 at lines 1 and 2. Using an infinite loop breakme allows the glitcher to be able to
hit the instruction whenever possible, since the CPU will always be running the JMP.
When glitched properly, the instruction is skipped, taking the execution flow to the
second loop, glitched, located between lines 4 and 7. This second loop is responsable
for keeping the GPIO pin 1 low, allowing the DDK to know that this was a valid glitch.
Finally, since the JMP instruction takes three clock cycles, and there is no inside the
loop, the glitcher will always hit it. By analyzing the graph 5.1, it is clear that glitching
for two clock cycles is enough to glitch the instruction, which results in skipping it.
A more precise and useful analyzis of glitching the JMP can be done by introducing

a second loop with irrelevant code inside, as shown in code 5.2. In this second code
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1 breakme :
2 jmp breakme

4 glitched :
5 ldi r24 , 0 b11111100
6 sts PORTD_OUTSET , r24
7 rjmp glitched

Code 5.1: Unconditional JMP loop code example. This is an infinite loop - the
CPU will always execute the same instruction until it is glitched. By
skipping this instruction, it is possible to reach the loop that signals a
successful glitch.

0 1 2 3 4 5 6 7 8 9 10

D = 6, W = 2

D = 4, W = 2

D = 1, W = 2

D = 0, W = 2

Figure 5.1: Timing diagram of unconditional JMP loop glitching tests. The glitch
parameters are represented by D (delay in clock cycles) and W (width in
clock cycles), being executed in different runs (i.e. there is a full target reset
between each glitch). The darker blocks in the timeline represent the clock
cycles that, by enabling the glitcher, a successful glitch happened.
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1 breakme :
2 jmp breakme

4 second :
5 ldi r24 , 0x00
6 sts PORTE_OUTSET , r24
7 ldi r24 , 0xFF
8 sts PORTE_OUTSET , r24

10 jmp second

12 glitched :
13 ldi r24 , 0 b11111100
14 sts PORTD_OUTSET , r24
15 rjmp glitched

Code 5.2: Unconditional double JMP loop code example. In this example two
glitches must be performed to be able to exit both infinite loops. The
second loop has code to toggle the LEDs on the XMEGA evaluation
kit, meaning that the CPU won’t be always executing the instruction
targeted. Therefore, a precise delay before the second glitch is required.
Finally, as the previous example, after all glitches, an infinite loop trig-
gers the DDK indicating a successful glitch.

snippet, the first loop breakme presented before still exists, but then the code hits a
second loop, second, which has code inside. Although the code inside this new loop
is related to the LEDs connected to the microcontroller board, understanding it is not
necessary.

The timing diagram for the glitches of the code 5.2, shown in the figure 5.2, shows
a clear gap in the timeline where no successful glitches were achieved. In this gap,
the instructions for blinking the LEDs are running, and since glitching them will not
force the flow out of the current loop, they are not relevant. It is also possible to see
that glitching in sequence also force second loop to exit, which is due to the fact that
the glitcher is not precise enough and will hit multiple instructions, and also due to
internal delays. Therefore, there is a chance that the glitcher is hitting the second JMP
instruction, even though the second delay is set to zero.
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D0 = 0, W0 = 2, D1 = 2, W1 = 3

D0 = 0, W0 = 2, D1 = 5, W1 = 1

D0 = 0, W0 = 2, D1 = 5, W1 = 2

D0 = 0, W0 = 2, D1 = 5, W1 = 3

D0 = 0, W0 = 2, D1 = 14, W1 = 2

D0 = 0, W0 = 2, D1 = 14, W1 = 3

D0 = 0, W0 = 3, D1 = 1, W1 = 1

D0 = 0, W0 = 3, D1 = 1, W1 = 2

D0 = 0, W0 = 3, D1 = 1, W1 = 3

D0 = 0, W0 = 3, D1 = 2, W1 = 1

D0 = 0, W0 = 3, D1 = 2, W1 = 2

D0 = 0, W0 = 3, D1 = 2, W1 = 3

D0 = 0, W0 = 3, D1 = 11, W1 = 1

D0 = 0, W0 = 3, D1 = 11, W1 = 2

D0 = 0, W0 = 3, D1 = 11, W1 = 3

Figure 5.2: Timing diagram of unconditional JMP double loop glitching tests. In this
graph, D0 and W0 correspond to the delay and width of the first glitch, while
D1 and W1 correspond to the delay and width of the second glitch, with all
units in clock cycles. The gaps between glitches indicate that the loop was
executed at least once, since glitching the LED toggling instructions have
no effect in the loop itself.
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Relative jumps
Another type of unconditional branch is the relative jump, which is represented by the
instruction RJMP. This instruction works by changing the flow of the program to the
address resulting of the sum between the current program counter address and the
specified value in the instruction, plus one. This instruction also takes two clock cycles
instead of three of the JMP [Atm98], since here the address is 12-bit long (while the
opcode itself occupies four bits), instead of 22-bit as the previous one. Since this is
a relative and not a direct branch, its argument consist of an offset from the current
location, which is considerably smaller than the full address. Therefore, one clock cycle
is necessary for executing the arithmetic operation for calculating the new address, while
another is required for effectly loading it into the register [Atm10].
The code snippet 5.3 shows how the RJMP was initially tested. The concept is the same

as the previous instruction - an infinite loop that forces the instruction to be glitched at
any moment. Just like with the JMP, the RJMP can be glitched, which causes the CPU
to skip the instruction, allowing it to get out of the breakme loop and hit the second
loop, glitched. This second loop is then used to allow the DDK to detect the glitch.
However, as shown in 5.3, the RJMP can also be glitched within one to three clock cycles,
while the JMP requires exactly two clock cycles of glitching to be always skipped.
Just like the JMP, to have a more precise analysis of the RJMP instruction, a second

loop second with code inside of it was introduced, as shown in code 5.4. By testing
all possible combinations inside a finite range, the timing graph 5.4 shows both glitches
being executed, being the first glitch responsable for the breakme loop and the second
for the second. It is clear on the graph that the second glitch can be execute either right
away (since the internal delays of the glitcher are enough to get through the contents
of the second loop) or a while after, which means that during the execution of the loop
itself no glitch combinations are useful.
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1 breakme :
2 rjmp breakme

4 glitched :
5 ldi r24 , 0 b11111100
6 sts PORTD_OUTSET , r24

8 rjmp glitched

Code 5.3: Unconditional RJMP loop code example. This code has the same
behavior as the code 5.1 - an infinite loop forcing the CPU to exe-
cute always the same instruction. After the infinite loop is glitched, the
DDK is triggered indicating a successful glitch.

0 1 2 3 4 5 6 7 8 9 10

D = 5, W = 1

D = 4, W = 3

D = 4, W = 2

D = 4, W = 1

D = 3, W = 3

D = 3, W = 1

D = 2, W = 2

D = 2, W = 1

D = 1, W = 1

D = 0, W = 2

D = 0, W = 1

Figure 5.3: Timing diagram of unconditional RJMP loop glitching tests. In this graph,
D corresponds to the delay (in clock cycles), while W corresponds to the
width (also in clock cycles). Glitching on almost every clock cycle is possible
since there are no instructions inside this loop (i.e. this instruction is always
being executed on the CPU). Not less important, the graph shows that
multiple glitch widths are valid and have the same effect on the instruction.
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1 breakme :
2 rjmp breakme

4 second :
5 ldi r24 , 0x00
6 sts PORTE_OUTSET , r24
7 ldi r24 , 0xFF
8 sts PORTE_OUTSET , r24

10 rjmp second

12 glitched :
13 ldi r24 , 0 b11111100
14 sts PORTD_OUTSET , r24

16 rjmp glitched

Code 5.4: Unconditional RJMP double loop code example. This code has the
same behavior as the code 5.2 - after exiting both loops the DDK is
triggered indicating a successful loop. Not less important, the contents
of the second loop force a precise delay to be used, since the instruction
is not always being executed on the CPU.
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Figure 5.4: Timing diagram of unconditional RJMP double loop glitching tests. In this
graph, D0 and W0 correspond to the delay and width of the first glitch, while
D1 and W1 correspond to the delay and width of the second glitch, with all
units in clock cycles. Note that the second glitch can either be executed
directly after the first, passing the second loop once, or a few clock cycles
later, passing the second loop more than once. This means that a glitch in
the middle of the loop is not successful, since it glitches the instructions not
related to the loop itself, but with the LED toggling.
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Conditional loops
Most of the loops in codes are conditional loops and not infinite. This means they
depend on some condition, which can be virtually anything - from a value of a counter
variable to an external input from the user. Because of that, two types of conditional
branches were tested: branch if equal and branch if not equal. Those are easily found
when analyzing code compiled by the AVR-GCC toolchain, and for such reason they
were selected among the multiple types of branch instructions available on the AVR
microcontroller CPU.

Branch if equal
Branch if equal is a type of conditional branch used to change the current flow of the
program if the compared values are equal. Internally, this is represented by the resulting
value of the subtraction of both values - if zero, the branch is executed, otherwise it is
skipped. For this reason this instruction is also know as branch if zero.
On AVR microcontrollers, this type of branch is represented by the instruction BREQ

and takes from one to two clock cycles [Atm98]. The first clock cycle is for checking
the internal CPU flag zero, which indicates if the last operation returned zero. The
second clock cycle only exists if the result of the previous step is true (i.e. the zero
flag is active) and consits of changing the current flow of the program by changing the
program counter accordingly.
For testing this instruction, the code 5.5 was used. Just like the initial tests with

unconditional loops, this is an infinite loop breakme with no code inside, except with
the CPI instruction, which is responsible for activating the CPU flag zero by comparing
the register r24 with the immediate value 0xFF. The register was previously filled with
this value, which allows the comparison to be true.
As expected, the results are similar to the ones achieved with JMP and RJMP: it is

consistent over time, as shown in the figure 5.5. This means that it does not matter
when the glitch happens, as long as it is done within two clock cycles. Note that, in
this scenario, it is possible to glitch the CPI instruction as well. However, this does not
affect the results negatively since, by slowing increasing the delay, it is possible to skip
this instruction (which takes one clock cycle [Atm98]).
A pratical example of a loop with BREQ is shown in the C code 5.6. Once compiled,

the resulting output is similar to the code 5.5. This is important because it shows that
the instruction is used even on very simple code snippets.
Just like the previous tests, code with two loops were also tested with BREQ. The

code 5.7 behaves exactly like the previous examples, but it uses conditional loops to
create an infinite loop (since the condition is always satistifed). Note that the last loop,
glitched, does not need to use the BREQ instruction since it will not be glitched and
can use a simple relative jump.
Just like the previous double glitch experiments, after glitching the first loop, it is

only a matter of finding the perfect timing to glitch the second one. As shown in the
figure 5.6, there are multiple combinations that will force both loops to exit.
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1 breakme :
2 cpi r24 , 0xFF
3 breq breakme

Code 5.5: Conditional BREQ loop code example. This code compares the register
r24 (whose value was previously set) to a constant and then repeats the
loop if they are equal. Note that, even though the compare instruction
can also be glitched, by increasing the delay this will not affect the
experiment results.

0 1 2 3 4 5 6 7 8 9 10

D = 6, W = 1

D = 4, W = 2

D = 4, W = 1

D = 3, W = 2

D = 3, W = 1

D = 2, W = 2

D = 2, W = 1

D = 1, W = 2

D = 1, W = 1

D = 0, W = 2

Figure 5.5: Timing diagram of conditional BREQ loop glitching tests. In this graph,
D corresponds to the delay (in clock cycles), while W corresponds to the
width of the glitch (also in clock cycles). As the graph shows, it is possible
to glitch this instruction with different combinations of width. Also, by
increasing the delay, the comparison is being skipped, allowing the glitcher
to hit the branch instruction.
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1 volatile unsigned int i = 255;

3 while (i == 255) {
4 // Do something .
5 }

Code 5.6: Example of BREQ loop in C code. This code, once compiled, will result
into a loop that uses the BREQ instruction on it.

1 breakme :
2 cpi r24 , 0xFF
3 breq breakme

5 second :
6 ldi r24 , 0x00
7 sts PORTE_OUTSET , r24
8 ldi r24 , 0xFF
9 sts PORTE_OUTSET , r24

11 cpi r24 , 0xFF
12 breq second

14 glitched :
15 ldi r24 , 0 b11111100
16 sts PORTD_OUTSET , r24

18 rjmp second

Code 5.7: Conditional BREQ double loop code example. Note that this code
behaves exactly as the previous examples, except that the first loop
will not always execute the same instruction due to the presence of the
comparison instruction. After glitching both loops (and exiting them),
the target triggers the DDK indicating a successful glitch.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D0 = 1, W0 = 1, D1 = 6, W1 = 1

D0 = 1, W0 = 1, D1 = 6, W1 = 2

D0 = 1, W0 = 1, D1 = 7, W1 = 1

D0 = 1, W0 = 1, D1 = 7, W1 = 2

D0 = 1, W0 = 2, D1 = 0, W1 = 2

D0 = 1, W0 = 2, D1 = 1, W1 = 1

D0 = 1, W0 = 2, D1 = 1, W1 = 2

D0 = 1, W0 = 2, D1 = 2, W1 = 1

D0 = 1, W0 = 2, D1 = 2, W1 = 2

D0 = 1, W0 = 2, D1 = 3, W1 = 1

D0 = 1, W0 = 2, D1 = 3, W1 = 2

D0 = 1, W0 = 2, D1 = 4, W1 = 1

D0 = 1, W0 = 2, D1 = 4, W1 = 2

D0 = 1, W0 = 2, D1 = 8, W1 = 1

D0 = 1, W0 = 2, D1 = 9, W1 = 1

D0 = 1, W0 = 2, D1 = 9, W1 = 2

D0 = 1, W0 = 2, D1 = 10, W1 = 2

Figure 5.6: Timing diagram of conditional BREQ double loop glitching tests. In this
graph, D0 and W0 correspond to the delay and width of the first glitch, while
D1 and W1 correspond to the delay and width of the second glitch, with all
units in clock cycles. The gaps between glitches indicate that the loop was
executed at least once, since glitching the LED toggling instructions have
no effect in the loop itself. Also, since the CPI instruction takes one clock
cycle [Atm98], increasing the delay by one cycle allows the glitcher to skip
it and hit the BREQ.
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Branch if not equal
The second conditional branch instruction tested was the branch if not equal, represented
by BRNE. This instruction behaves exactly like the previous one, except it branches if
the zero flag is not active. For this reason, it is also known as branch if not zero. This
branch instruction takes two clock cycles to be executed for the same reasons as the
BREQ: the first clock cycle is required for checking the flag, while the second one is for
executing the branch itself.
The instruction was tested just like the BREQ, as shown in code 5.8. Note that the

register r24 was previously loaded with a value diferent than 0xFF, which allows the CPI
(compare with immediate) instruction to properly set the zero flag as not active. Finally,
the CPI instruction can be ignored, since multiple experiments with the increasing delay
setting will force it to be skipped.
The figure 5.7 shows in which moments the glitch was possible. As it is clearly visible,

it repeats itself over time, since it is running an infinite loop. By increasing the delay,
it would be possible to skip the CPI instruction and glitch the BRNE itself, forcing it to
glitch the correct instruction, even when the initial timing (no delay) is off.
The importance of this instruction is visible when optimized C code is disassembled.

The code 5.6 previously demonstrated uses the BREQ instruction when compiled without
any optimization. However, in embedded systems optimization is a common pratice,
since the size of the binary and the performance are critical as the storage capacity and
processing power are limited. When compiled with optimizations enabled, this code
uses BRNE instead of BREQ, and through empirically analysing the disassembled code of
different types of loop (while and for), it is clear that the compiler prioritizes the use
of this new instruction instead of the normal BREQ.
A double glitch of the BRNE was also tested with the code 5.9. Just like the previous

experiments, it is possible to exit both loops (breakme and second) as long as the timing
is accurate enough, as shown in the figure 5.8.
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0 1 2 3 4 5 6 7 8 9 10

D = 5, W = 2

D = 5, W = 1

D = 4, W = 2

D = 4, W = 1

D = 3, W = 2

D = 3, W = 1

D = 2, W = 2

D = 2, W = 1

D = 1, W = 2

D = 0, W = 2

Figure 5.7: Timing diagram of conditional BRNE loop glitching tests. In this graph, D
corresponds to the delay (in clock cycles), while W corresponds to the width
of the glitch (also in clock cycles). It is possible to glitch this instruction
with different combinations of width, as shown in the graph. Not less impor-
tant, by increasing the delay, the comparison is being skipped, allowing the
glitcher to hit the branch instruction.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D0 = 0, W0 = 2, D1 = 2, W1 = 2

D0 = 0, W0 = 2, D1 = 3, W1 = 1

D0 = 0, W0 = 2, D1 = 3, W1 = 2

D0 = 0, W0 = 2, D1 = 4, W1 = 1

D0 = 0, W0 = 2, D1 = 4, W1 = 2

D0 = 0, W0 = 2, D1 = 9, W1 = 2

D0 = 0, W0 = 2, D1 = 12, W1 = 1

D0 = 1, W0 = 2, D1 = 1, W1 = 2

D0 = 1, W0 = 2, D1 = 2, W1 = 1

D0 = 1, W0 = 2, D1 = 2, W1 = 2

D0 = 1, W0 = 2, D1 = 3, W1 = 1

D0 = 1, W0 = 2, D1 = 3, W1 = 2

D0 = 1, W0 = 2, D1 = 8, W1 = 2

D0 = 1, W0 = 2, D1 = 10, W1 = 1

D0 = 1, W0 = 2, D1 = 10, W1 = 2

D0 = 1, W0 = 2, D1 = 11, W1 = 1

D0 = 2, W0 = 1, D1 = 3, W1 = 2

D0 = 2, W0 = 1, D1 = 4, W1 = 1

D0 = 2, W0 = 1, D1 = 4, W1 = 2

D0 = 2, W0 = 1, D1 = 5, W1 = 1

Figure 5.8: Timing diagram of conditional BRNE double loop glitching tests. In this
graph, D0 and W0 correspond to the delay and width of the first glitch, while
D1 and W1 correspond to the delay and width of the second glitch, with all
units in clock cycles. The gaps between glitches indicate that the loop was
executed at least once, since glitching the LED toggling instructions have
no effect in the loop itself.
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1 breakme :
2 cpi r24 , 0xEE
3 brne breakme

Code 5.8: Conditional BRNE loop code example. This code behaves exactly as
the code 5.5, where an infinite loop can be glitched even though the
comparison instruction is present before the branch.

1 breakme :
2 cpi r24 , 0xEE
3 brne breakme

5 second :
6 ldi r24 , 0x00
7 sts PORTE_OUTSET , r24
8 ldi r24 , 0xFF
9 sts PORTE_OUTSET , r24

11 cpi r24 , 0xEE
12 brne second

14 glitched :
15 ldi r24 , 0 b11111100
16 sts PORTD_OUTSET , r24

18 rjmp glitched

Code 5.9: Conditional BRNE double loop code example. Note that this code
behaves exactly as the previous examples, including the fact that the
first loop will not always execute the same instruction due to the pres-
ence of the comparison instruction. After glitching both loops (and
exiting them), the target triggers the DDK indicating a successful glitch.
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The strcpy function
To simulate a more realistic scenario, a C code was also glitched. This code uses the
strcpy function, which is responsible for copying a null-terminated string from one
point of the memory to another. This functions works by checking the current byte
being copied, and since strings in C end with a null byte, it stops when one is found.
The goal of this experiment is to glitch on the exact moment where the function should
stop copying (i.e. when the null byte is found), forcing it to copy more bytes than
the original string. As result, the function would copy also variables around it in the
memory, which could reveal hidden or secret information on the code (such as encryption
keys, paths or memory addresses).
In the following sections it will be explained the attacked code, as well the goal

of this attack. Limitations regarding what can be achieved with the current glitcher
implementation when attacking the strcpy function are also discussed, followed by an
explanation showing how to overcome them. Finally, the glitching results will be then
described, showing what can be achieved with single or multiple glitches attacks.

The exploitable code
The code 5.10 shows a simplified version of the attacked code. The original code has
calls to enable the external clock and UART and to synchronise with the DDK, but
those parts of the code are not relevant for this analysis. It consists of seven global
variables (lines 1 to 7), with the one right in the middle (line 4) the string that will
be copied to a local buffer. The program begins by defining a local variable, buffer,
256 bytes long, which will be used to store the copied string. After that, the strcpy is
called (line 13), passing as first argument the destination buffer (buffer) and the origin
string (foobar). Later, buffer is printed using fputs (line 14) and the codes enter an
infinite loop of NOP instructions (line 16).

The goal of this attack is to glitch the strcpy function exactly when the null byte
that terminates the foobar string is being checked. By doing that, the next string in
the memory will be copied, until the function hits another null byte. Once printed over
the UART port, it would be possible to see multiple strings (i.e. the original foobar
string and one of the secret strings around it).

strcpy internals and padding
Part of the disassembled code of the strcpy function is shown in code 5.11. The part
here discussed is the relevant one, since it contains the actual loop that copies the string.
It works by loading into the register r0 the current byte pointed by the special register

Z and then storing it into the address pointed by the special register X. Both registers are
incremented after being used, which means that the pointer advances in the memory.
Finally, strcpy checks if the byte is null by running it through an AND instruction (which
sets the zero flag if the value is zero) and looping if not by using the BRNE instruction.
Since the goal is to copy even when a null byte is found, glitching the loop (BRNE) is

not useful. As previously shown in the experiments, glitching this instruction results in
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1 char secret0 [] = " 000000 ";
2 char secret1 [] = " 111111 ";
3 char secret2 [] = " 222222 ";
4 char foobar [] = " foobar ";
5 char secret3 [] = " 333333 ";
6 char secret4 [] = " 444444 ";
7 char secret5 [] = " 555555 ";

9 int main ()
10 {
11 const char buffer [256] = {0};

13 strcpy (buffer , foobar );
14 fputs(buffer , stdout );

16 while (1) { asm volatile ("nop\n"); }
17 }

Code 5.10: Exploitable C code calling the strcpy function. This code copies a
global string into a local buffer and then prints it. After that, the
CPU is held at an infinite loop.

1 loop:
2 ld r0 , Z+
3 st X+, r0
4 and r0 , r0

6 brne loop

Code 5.11: Partial disassembled code of the strcpy function. Note the presence of
the load instruction (ld) with a post-increment for reading one byte
from the source string and the store instruction (st) with a post-
increment for writing one byte to the destination buffer. After that,
the byte is verified in case of zero with an AND instruction to detect an
end of string.
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1 char* strcpy (char *dest , const char * source )
2 {
3 asm("nop\n"); asm("nop\n");
4 asm("movw r30 , r22\n");
5 asm("nop\n"); asm("nop\n");
6 asm("movw r26 , r24\n");
7 asm("nop\n"); asm("nop\n");

9 asm(" strcpy_loop :\n");
10 asm("ld r0 , Z+\n");
11 asm("nop\n"); asm("nop\n");
12 asm("st X+, r0\n");
13 asm("nop\n"); asm("nop\n");
14 asm("and r0 , r0\n");
15 asm("nop\n"); asm("nop\n");
16 asm("brne strcpy_loop \n");
17 asm("nop\n"); asm("nop\n");
18 }

Code 5.12: Padded version of strcpy inserted as C code. Note that between each
instruction a NOP was placed to avoid pipeline issues.

skipping it and not forcing it to loop. Therefore, the points where one might want to
glitch are the AND instruction (to glitch the comparison) or the LD instruction (to read
a different byte from the memory). By attacking any of them, it would be possible to
not set the zero flag, which would force the loop to continue even when r0 is null.
Unfortunately, as previously noted, the glitcher is not precise enough to glitch fast

instructions such as AND (which takes one clock cycle [Atm98]). Glitching the LD would
be hard as well, since it takes two clock cycles, and glitching it might damage the
instructions around it for the same reason. Therefore, for simplifying the attack, the
strcpy was padded between every instruction with two NOP instructions. This allows
the glitcher to hit one specific instruction without disrupting another one (so hitting
the AND would not damage the fetching and decoding of the BRNE in the pipeline, for
example). By inserting the code 5.12 into the exploitable C code, the program is forced
to use our padded version of the function, which can be more easily glitched.

Results
Extensive tests were done for finding the timing to glitch this code. By specifying a long
range of delay values, it is possible to get the whole original string to be copied before
glitching. Initially only one secret was captured, but by reproducing the attack and
trying to locate the timing of a second and third glitch, it is possible to copy multiple
strings around the original one.
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Capturing the first secret

This is the first attack done and its goal is to force the strcpy to copy not only the
foobar string, but one of the secrets around it. Since we want the whole original string
to be copied first, the glitch must be precisely done right when the null-byte is being
read or tested. This means that, unlike the previous experiments, there are no multiple
ranges of possible glitch settings, but a small one which is the window of glitching that
will hit the null byte, as shown in the figure 5.9.
Using a script to monitor the output from the target’s UART, it is possible to see

both strings, as shown on log 5.13. The tests demonstrated on it are equivalent to the
both small windows of glitching represented in graph 5.9. As shown in the log, first the
original string is copied (66 6F 6F 62 61 72, "foobar"), then a bogus byte (0x10) and
finally the next string in the memory (32 32 32 32 32 32, "222222"), which correspond
to the secret2 string. The corrupted byte in the middle is present since it is most likely
that the LD instruction was glitched. By glitching the load of the value into r0, a wrong
value would be stored in the destination and later compared, allowing the secret string
to be copied.

Capturing other secrets

Once the first glitch has been done successfully, it is trivial to reproduce it for the second
string. This means that a double glitch can be done, which will force the program to
reveal the next string in the memory. By trying a range of combinations, just like the
previous glitch, it is possible to find the small window where the null byte is being
processed and glitch on that moment. Both glitches are shown in the figure 5.10 and
correspond to the monitor log 5.14.
Note that, on the log 5.14, right after the result obtained in the previous glitch there

is a third string (31 31 31 31 31 31, "111111"), which corresponds to the secret1
variable. As separator, it is still the byte 0x10, which shows clearly that this second
glitch is very stable. Finally, to capture another string in the memory, it would be
necessary only to introduce a third glitch. This is indeed possible, as shown in the
timing diagram of the figure 5.11 and log 5.15.
In this last experiment, the third string (30 30 30 30 30 30, "000000" corresponds

to the secret0 variable in the memory, which shows that multiple glitches are possible.
The number of maximum glitches allowed is virtually infinite, as long as it does not
damage other instructions that might corrupt the original program’s flow.
It is important to note that after a while unstable results might be output on the

target’s UART. For example, on log 5.15, multiple strings of different lengths were
printed, oscillating between 25 and 27 bytes long. This indicates that the null byte is
not being stored on the destination buffer, which is a glitch on the ST (store) instruction.
Also, by analysing the strings, it is possible to see a different byte on the second and third
result, a 0x50 (ASCII character ’P’), which indicates that the byte is still corrupted, but
in a different way. However, since the goal is to obtain multiple strings around foobar,
the byte that replaces the null byte of each string, or the fact that it might not even be
copied, is not relevant, as long as the other strings are intact.
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Another important detail is the the glitch delay between each attack. The first glitch
requires a delay of 94 clock cycles, while the second and third of 80 clock cycles. What
happened is that the first glitch takes a little more time since it has to consider the
function call and its prelude, while the others do not need, since they never left the
strcpy loop.
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1 + Running test 189 of 1502
2 ? Got something from target , len = 13 [66 6F 6F 62 61 72
3 10 32 32 32 32 32 32] [ foobar 222222]
4 + Accuracy : 100.0%

6 + Running test 190 of 1502
7 ? Got something from target , len = 13 [66 6F 6F 62 61 72
8 10 32 32 32 32 32 32] [ foobar 222222]
9 + Accuracy : 100.0%

Code 5.13: Output from monitor script showing the first secret string captured.
Note that the byte replacing the null byte is 0x10. This means that a
wrong value was copied to the destination string, indicating that either
the load or the store instructions were glitched.

0 10 20 30 40 50 60 70 80 90 100

D = 94, W = 1

D = 94, W = 2

Figure 5.9: Timing diagram of the first glitch on the strcpy function. Note that there
are not many possibilities of glitching the code - only on one specific moment
it is possible to attack the target. This moment represents the end of the
string, which is the goal of the attack.
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1 + Running test 1777 of 4444
2 ? Got something from target , len = 20 [66 6F 6F 62 61 72
3 10 32 32 32 32 32 32 10 31 31 31 31 31 31] [ foobar 222
4 222 111111]
5 + Accuracy : 100.0%

7 + Running test 1778 of 4444
8 ? Got something from target , len = 20 [66 6F 6F 62 61 72
9 10 32 32 32 32 32 32 10 31 31 31 31 31 31] [ foobar 222

10 222 111111]
11 + Accuracy : 100.0%

Code 5.14: Output from monitor script showing two secret strings captured. Note
that all strings are separated by a constant value (0x10), which can
be interpreted as a very precise and reliable glitch.

0 20 40 60 80 100 120 140 160 180 200

D0 = 94, W0 = 1, D1 = 80, W1 = 1

D0 = 94, W0 = 1, D1 = 80, W1 = 2

D0 = 94, W0 = 2, D1 = 77, W1 = 1

D0 = 94, W0 = 2, D1 = 77, W1 = 2

Figure 5.10: Timing diagram of the two glitches on the strcpy function. Note that the
first glitch remains at the same position (since it was targeted for hitting
the end of the first string), while the second glitch oscillates a few clock
cycles. This allows it to hit different instructions on the execution, both
causing the same effect.
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1 + Running test 81 of 101

3 ? Got something from target , len = 25 [66 6F 6F 62 61 72
4 50 32 32 32 32 32 32 31 31 31 31 31 31 30 30 30 30 30
5 30] [ foobar 222222111111000000]

7 ? Got something from target , len = 27 [66 6F 6F 62 61 72
8 50 32 32 32 32 32 32 10 31 31 31 31 31 31 10 30 30 30
9 30 30 30] [ foobarP222222 111111 000000]

11 ? Got something from target , len = 25 [66 6F 6F 62 61 72
12 50 32 32 32 32 32 32 31 31 31 31 31 31 30 30 30 30 30
13 30] [ foobarP222222111111000000 ]

15 ? Got something from target , len = 26 [66 6F 6F 62 61 72
16 32 32 32 32 32 32 10 31 31 31 31 31 31 10 30 30 30 30
17 30 30] [ foobar222222 111111 000000]

19 + Accuracy : 100.0%

Code 5.15: Output from monitor script showing three secret strings captured.
Note that the separator oscillates this time, while on the previous
experiments it was a constant value (0x10).

0 30 60 90 120 150 180 210 240 270 300

D0 = 94, W0 = 1

D1 = 80, W1 = 1

D2 = 80, W2 = 1

Figure 5.11: Timing diagram of the three glitches on the strcpy function. In this graph
each line represent a step of the glitcher instead of a whole glitch combina-
tion by itself. Note that only a subset of each previous glitch can be used
in this attack. The reason is because it has to be very precise, and any
damage to the instructions nearby would cause the third glitch to fail.
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As shown in this work, clock glitching can corrupt instructions on AVR microcontrollers
in a predictable and repeatable fashion. The design of the implemented glitcher in
this work was outlined in Section 4. Experiments not only with unconditional and
conditional loops were done, but also with compiled C showing that the code does not
necessarily have to be designed specifically for being attacked. As shown in Section 5,
even though the glitcher has internal delays, attacks can be done.
By controlling the clock, the CPU can be directly attacked, allowing an attacker to

compromise the entire system, since the CPU requires its clock to work (i.e. if the clock is
stopped, the CPU is halted). It is possible then to glitch in specific moments, targeting
specific instructions on the executing code, as it was done in this work. Considering that
the code running on the microcontroller is previously known by the attacker, finding
an attack vector can be easily done. By adjusting the glitcher to hit the necessary
instructions, an attack could change the original execution flow of the program, allowing
the attacker to skip or repeat loops, calls or simply corrupt instructions in a way that
wrong values are loaded or calculated. As shown in this work, functions like the strcpy
are vulnerable to such attacks, allowing data to be extracted from the memory. Such
techniques have been previously proposed by other as well as an attack vector for smart
cards [KK99, AK96], where by glitching the loop it is possible to dump the whole
memory. When working with an unknown environment, where the attacker does not
have previous access to the executing code, glitching the precise instruction can be
considered more difficult. However, in this work most of the attacks were done by brute-
force - a process that can take from hours to days of execution. Although slower, brute-
force attacks can be used when glitching the clock signal to find the exact parameters
that will glitch interesting instructions.

An attacker could also use heuristic methods to find out such parameters, acceler-
ating the search [CPB+13]. To determine if a glitch is interesting or not in a case of
dumping data after the string, the exposed information can be analysed and checked
regarding its contents if machine code, internal keys or any other relevant information
was extracted. Note that, when binary information is dumped (like machine code),
functions like strcpy might get stuck on the null byte, since it represents the end of an
string. Although it is possible to circumvent this issue by continuously glitching, this is
not always trivial, since, as shown in Section 5, different values can be loaded on each
glitch. This would require an extra analysis to find out if that byte was actually a null
byte or another extract one from the memory.

It is important to note that, since the target in this work was an AVR microcontroller
with a RISC CPU, the relatively simple pipeline used by the AVR architecture must
be considered as well. By fetching instructions while executing others, a glitch on one
instruction could corrupt the next one, since both execute on the same the clock cycle.
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The typical approach to address this issue is to insert a NOP between each instruction
from the original code, as done with the strcpy function in this work. In case the
next instruction gets corrupted due to the clock glitch, no original code instruction is
damaged. However, this solution is not always available, since the code is not always
modifiable (or even known). Even though the pipeline was a known issue from the
beginning, during this work it was not consired on the initial experiments, only on the
last one. By analysing the instructions available to the AVR architecture, it is clear that
some instructions take more than one clock cycle [Atm98], even though this is a RISC
architecture [Atm12]. This is due some instructions either require bigger operands, such
as the JMP instruction (where the operand does not fit inside the whole instruction),
or require a new instruction to be fetch, such as branch instructions (where the first
instruction after the branch has completed has to be fetch before being executed). This
is also interesting because, by having multiple fetches, it is possible to glitch only a part
of the instruction, corrupting only part of it (e.g. its operands). This would make the
instruction behave erractly, which could lead into a valid scenario where an attack is
possible (such as jumping to the wrong address in the memory, for example). Finally,
note that, since a clock glitch forces the target to run outside its normal operation range,
the behavior is unknown and unpredictable. Therefore, the chance that, by tweaking
the glitch (such as increasing the frequency or changing the wave parameters), the next
instruction does not get corrupted is not completely excluded, even though it did not
happen during this work.
This work can be expanded for any RISC CPU that is vulnerable to a clock glitch-

ing attack, and in such scenarios, the pipeline would most likely still be present and
interfere with the glitches. However, if the target was a CISC (Complex instruction set
computing) CPU, it would be, in theory, possible to hit parts of the execution of the
instruction, since CISC CPU instructions can take more than one clock cycle. Note
that such instructions perform multiple single-clock low-level operations, thus allowing
an attacker to glitch a specific operation within the same instruction. In instructions
with both data read and write into the memory, for example, it would be possible to
glitch only the read, forcing the CPU to not read the correct data from the memory, or
the write, forcing the CPU to not write the correct data to the memory. However, mod-
ern CISC architectures are based on RISC-like micro-operations. Hence, many many of
the observations for RISC architectures will apply to micro-operations as well.
In this work the target was running without its internal PLL (i.e. the clock received

from the external source is the clock used internally). However, if activated, the PLL
could interfere on a single clock glitch, since the glitch would pass through it first. Even
though longer glitches (i.e. multiple clock cycles as width) might be able to pass through
it, but there is no guarantee about its repeatability and accuracy. Not less important,
the glitcher could be used to glitch other clock sources without providing it directly to
the target. For example, by grounding a quartz crystal oscillator, it would be possible
to force it to a logic zero. This allows the attacker to induce values on the clock signal,
generating clock cycles that are at a higher frequency than the oscillator produces. The
concept of such attack is the same as the one demonstrated in this work, except that
there is the chance of a clock drift between different clock domains, since not all of them
are generated by the DDK’s PLL. Finally, the same principle can be applied by taking
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an external clock and passing it through the glitcher instead of generating it internally,
since a glitch can be generated by simply feeding a logic zero instead of the original
signal as output for short amounts of time.

Future work
One of the biggest limitations of the glitcher developed in this work is regarding its
delay after the target has booted. Due to the state switching in the main module
(which takes one clock cycle per switch), there is a delay between the moment when
the target finish its boot and the moment when the glitcher starts the glitching process.
Such issue happens between the states wait and delay, since it has to first read the
next glitch setting from the FIFO in the state read. One solution would be to create
an extra module responsible for handling the FIFO reading. This module would have
its own state machine and would take care of reading the FIFO and proving the next
glitch settings straight to the main module. By removing the reading process from the
main module, the delay would disappear, since it would be possible to go straight to
the states delay and glitch. Not less important, the delay that happens between glitches
(since it needs to go through read again) would also be removed, allowing the glitcher
to execute a sequence of glitches without any delays in between.
As previously explained in Section 2, a glitch would consist of having more than one

rising edge during the period of one clock cycle. Since the glitching clock (99 MHz)
is three times faster than the normal clock (33 MHz), by simply switching clocks the
output has three rising edges for glitching. This bevahior, however, is undesired, since
it could behave as a double glitch. By having three rising edges instead of two, a
glitch could force, for example, the CPU to skip the instructions in two clock cycles
instead of only one. This reduces the preciseness of the glitcher, making it harder to
glitch fast instructions (such as AND, which takes only one clock cycle). Such problem is
demonstrated on the figure 6.1. The higlighted area in the figure indicates the moment
where the clock is being glitched: it starts on one rising edge and it ends on the next one,
having three rising edges between them (including the first and excluding the last). The
ideal scenario is also shown as the last signal in the figure, where only two rising edges are
present during the period of one clock cycle, being the last rising edge in the highlighted
area already from the next clock cycle. One solution for such issue is to use 66 MHz
instead of 99 MHz as glitching clock. However, during the development of this work, 66
MHz proved to be unstable and unreliable for glitching, since the microcontroller was
able to still compute some instructions properly with at this frequency. Therefore, the
best solution would be to create another module, responsible only for generating the
ideal signal as shown on the figure. The output of this module would then be used as
input on the core as glitching clock, giving the desired behavior for the glitcher.
Another limitation of the glitcher is the interface between the DDK and the external

monitoring script. This interfaces uses the DDK’s internal UART, which is provided
directly by the USB port. However, the current implementation has performance issues,
which makes the writing and reading speeds of the script slower. The current imple-
mentation forces the script to have a delay of about 80ms between each character when
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Figure 6.1: Timing diagram depicting the limitations of the current glitcher implemen-
tation. The highlighted area indicates the rising edges of the first clock cycle
(where the glitcher was enabled), which is counted as part of the glitch, and
the second one (where the glitcher was disabled), which is not considered
since it is already another normal clock cycle at the same instant. Three
fast rising edges (i.e. used for glitching) are present as output of the current
glitcher, while ideally only two should be output.

writing to the serial line. By fixing the DDK’s UART implementation, this delay could
be reduced or removed, allowing the script to send commands faster to the DDK. This
would not improve the speed of one isolated test, since the glitcher is not modified,
but it would increase the overall speed when running brute-force attacks to try and
find a range of settings for glitching. Another solution would be removing completely
the external script. This would require an implementation of a USART port on the
DDK only for reading the target’s output, which then would have to be properly stored.
However, since the goal is not to read the full target’s output, but to receive a feedback
information, reading and storing only one byte would be sufficient. This byte could
have multiple values, each one representing what happened (glitch unsuccessful, glitch
successful or unknown error), or even data that can later be used for analysis. Both
solutions would increase the overall speed of running multiple attacks, being the second
one considerably faster than the first, since it would not require any serial communica-
tion with the external world at all (except for logging and initial setup, such as giving
the full range that should be tested).
One simple improvement for the glitcher would be using proper cabling when con-

necting the DDK to the target. Depending on which type of wire is being use, it is
possible that noise, as well as the lack of proper termination of the wires, can result
in interference and ringing on the glitch signal. Therefore, by improving the cabling it
is possible to increase the quality of the clock signal that arrives on the target, since
the clock will arrive with less distortion. Finally, it is important to note that the whole
glitcher can be reduced to only one channel on the DDK by removing the debug pins.
By removing unused and unnecessary pins, the glitcher would need only the clk_out
(clock output), rst_o (reset output) and en_i (target ready) pins to work. The other
three remaining pins can then be used for feedback from the target, either by directly
changing the values on them, or by using a USART. Such improvement is interesting
since, by freeing the other channels, they can also be used for glitching. This would
allow a parallel glitching framework to be developed, which can be later used to glitch
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up to eight targets at the same time, being each target connected to one of separate
DDK channel. Such framework would reduce the required time for brute-force attacks,
allowing bigger ranges and more complex target algorithms (i.e. slower algorithms that
take more clock cycles to compute) to be experimented with.
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In this work, an analysis of embedded microcontrollers against clock glitching attacks
was performed. For this, the AVR RISC architecture of an XMEGA microcontroller was
attacked by a glitcher developed in the Die Datenkrake platform. The microcontroller,
located on an Atmel evaluation board, was attacked by providing an external clock to it.
The clock signal induced faults in the system, which were then analysed and explained
in this work.
The implemented glitcher is completely modular and fully expandable, allowing future

work to modify it for specific scenarios or even improve it. The glitcher design itself
utilizes software hardware co-design, i.e. the glitcher was realized using software as well
as a dedicated hardware design. The hardware, running on the DDK’s FPGA, is respon-
sible for generating the required synchronized clock signals and handling all hardware
related operations (e.g. synchronization triggers). The software, running on the DDK’s
ARM CPU, is responsible for interfacing such hardware modules for configuration, fine
adjustments and feedback information retrieval.
Multiple experiments were performed against the target. The initial target codes

used in such attacks consisted of handcrafted unconditional loops, as a proof of concept
to demonstrate that glitching on this architecture is possible. However, since in most
scenarios conditional loops are also present, instructions for such branches were also
considered with. Both sets of instructions showed that, when glitched, it is possible
for an attacker to force the CPU to skip those instructions, which resulted in exiting
the loop in those programs. Finally, to demonstrate that the code does not need to be
specially designed for being attacked, the strcpy function from the C standard library
was targeted, allowing the attacker to bypass the end of strings in the memory and
dump more data than what was originally designed in the program.
As previously noted, the environment used for the experiments in this work is com-

pletely modular. Different targets of different architectures can be attacked, requiring
only the new device to be setup accordingly. By changing either the glitcher or the exter-
nal monitor script, it is possible to introduce better and faster techniques for finding
glitching ranges (i.e. ranges where the clock glitch must happen to induce an exploitable
fault) without requiring extensive modifications. Not less important, the whole glitcher
can be improved regarding its preciseness and accuracy, allowing better glitches in more
complex scenarios or programs to be performed, see Section 6.
This work successfully demonstrated that the AVR platform is vulnerable to clock

glitching attacks, and that the executing program can be exploited without detection.
By skipping instructions, it is not only possible to bypass validations and verifications,
but also to recover data stored on the device. Despite the issues regarding the glitcher’s
preciseness, it was still possible perform accurate and repeatable attacks against the

50



7 Conclusion

target. Finally, the modular design of the glitcher makes it possible do adapt the design
to attack other targets as well.
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